检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晶 袁克海 温勇[1] Wang Jing;Yuan Kehai;Wen Yong(School of Science,Nanjing University of Posts&Telecommunications;Department of Psychology,University of Notre Dame)
机构地区:[1]南京邮电大学理学院 [2]美国圣母大学心理学系
出 处:《调研世界》2022年第10期66-77,共12页The World of Survey and Research
基 金:国家自然科学基金面上项目“多变量非正态数据结构方程模型的统计方法研究”(31971029)的资助。
摘 要:在实际应用中,正态分布普遍应用于数学、物理学等诸多领域,而经济学、医学、社会科学等领域的研究数据往往都不具备严格的对称性,不适合用正态分布来拟合此类非对称数据,因此,各种偏态分布被相继提出。基于上述背景,本文收集了来自人口、经济、金融、医学等多领域的119组多维真实数据,分别利用最大似然估计与改进的EM算法,对多维正态分布与多维偏正态分布进行了参数估计,在此基础上分别从数据的期望、协方差、M型多维偏度与峰度、分布拟合的AIC和BIC值等多方面入手,比较了多维正态分布与多维偏正态分布对真实数据的拟合情况。结果表明,首先,两种分布下期望、协方差的估计值虽有差异,但其相对误差在一定范围内浮动;其次,偏正态分布假设下M型多维偏度及峰度数值较高;同时,偏正态分布将产生更小AIC、BIC值,因此可认为偏正态分布更适合拟合多维真实数据。此外,本文还研究了稳健转换对分布拟合的影响,得出“利用稳健转换后的数据对分布进行拟合通常会得到更小的AIC和BIC值”的结论。Normal distribution is widely used in mathematics and physics,but the research data in economics,medicine and social sciences are not strictly symmetric in most cases.Therefore,normal distribution is not suitable to fit such asymmetric data.In this study,119 groups of multi-dimensional real data from multiple fields including population,economy,finance and medicine are collected.The maximum likelihood estimation and the improved EM algorithm are used to estimate the unknown parameters of the multi-dimensional normal and skew-normal distribution.On this basis,the fitting of multi-dimensional normal distribution and multi-dimensional skew normal distribution to real data is compared from data expectation,covariance,and Mardia's measurements of skewness and kurtosis,the AIC and BIC values of distribution fitting.The results show that:firstly,although the estimated values of expectation and covariance under the two distributions are different,their relative errors fluctuate within a certain range;secondly,the Mardia's measurements of skewness and kurtosis values are higher under the assumption of the skew normal distribution;finally,the skew normal distribution will produce smaller AIC and BIC values,so skew normal distribution is more suitable for fitting multidimensional real data.In addition,this study also investigates the effect of the robust transformation on distribution fitting.The results show that using the data after robust transformation to fit the two distributions will usually get smaller AIC and BIC values.
关 键 词:多维正态分布 多维偏正态分布 真实数据 稳健转换 分布拟合
分 类 号:O211.9[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112