含大规模风电电网的关键线路识别及连锁故障预测  被引量:4

Key Line Identification and Cascading Fault Prediction for the Grid Containing Large-Scale Wind Power

在线阅读下载全文

作  者:易小虎 刘青[1] 曹乐 丁楠 YI Xiaohu;LIU Qing;CAO Le;DING Nan(School of Electrical Control and Engineering,Xi’an University of Science and Technology,Xi’an 710054,Shaanxi,China)

机构地区:[1]西安科技大学电气控制与工程学院,陕西西安710054

出  处:《电网与清洁能源》2022年第10期79-86,共8页Power System and Clean Energy

基  金:中国博士后科学基金资助项目(2019M653634)。

摘  要:电力系统中的少数关键线路在连锁故障的演化过程中起着重要作用,随着电网风电渗透率的增加,风电出力的不确定性会影响关键线路的识别。为提高辨识准确性,提出考虑连锁故障过程中的支路潮流与结构脆性关联度的综合脆弱性指标来识别关键线路,进而进行连锁故障预测。最后,通过IEEE39节点系统仿真计算与风电并网运行的风险评估结果进一步验证了所提模型和方法的合理性,并且分析了风电渗透率对连锁故障停电风险的影响。A few key lines in the power system play an important role in the evolution of cascading faults. With the increase of wind power permeability,the uncertainty of wind power output will affect the identification of the key lines. In order to improve the accuracy of identification,a comprehensive vulnerability index considering the correlation between branch power flow and structural brittleness in the process of the cascading fault is proposed to identify the key lines,and then predict the cascading fault. Finally, the rationality of the proposed model and method is further verified by the IEEE 39bus system simulation calculation and the risk assessment results of grid-connected wind power operation,and the impact of wind power permeability on the risk of cascading fault outage is analyzed.

关 键 词:风电并网 综合脆弱性指标 关键线路 事故链 连锁故障预测 

分 类 号:TM614[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象