Development and evaluation of a hot-rolled 780 MPa steel sheet with an ultra-high expansion ratio  

在线阅读下载全文

作  者:ZHANG Chen WANG Huanrong 

机构地区:[1]Research Institute,Baoshan Iron&Steel Co.,Ltd.,Shanghai 201999,China

出  处:《Baosteel Technical Research》2022年第3期35-40,共6页宝钢技术研究(英文版)

摘  要:This paper explores the development of a 780 MPa hot-rolled high-strength steel with an ultra-high hole expansion ratio(HER) by using a nanoprecipitation-controlled technology.Systematic analysis and evaluation of an industrially produced steel sheet have been performed to investigate the microstructure, nanoprecipitates, tensile properties, HER,bendability, and forming limit diagram.The newly developed 780 MPa hot-rolled high-strength steel sheet is composed of a fully ferritic microstructure of approximately 5 μm with precipitates of approximately 4-5 nm in ferrite grain interiors.The yield strength and tensile strength can reach above 700 and 780 MPa, respectively.Moreover, the fractured elongation is higher than 19% in the transversal direction, and the average HER exceeds 70%.Furthermore, the newly developed 780 MPa high-strength steel has good bendability reaching R/t=0.2 at 90°.Compared with the conventional 780 MPa high-strength steel, the newly developed 780 MPa high-strength steel exhibits superior forming ability, which is suitable for the production of complex components.High-cycle fatigue indicates that the fatigue limit of the newly developed high-strength steel is 430 MPa under a stress ratio of r=-1,indicating good fatigue properties.The excellent combined mechanical properties of the newly developed 780 MPa high-strength steel are attributed to the grain-refined ferritic microstructure with nanoprecipitates in ferrite grain interiors.

关 键 词:NANOPRECIPITATION fully ferritic steel hole expansion ratio(HER) fatigue limit forming limit diagram(FLD) 

分 类 号:TG335.11[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象