基于多标签分类算法的多输入多输出智能接收机模型  

Multi-input multi-output intelligent receiver model based on multi-label classification algorithm

在线阅读下载全文

作  者:王安义[1] 张衡 WANG Anyi;ZHANG Heng(College of Communication and Information Engineering,Xi’an University of Science and Technology,Xi’an Shaanxi 710054,China)

机构地区:[1]西安科技大学通信与信息工程学院,西安710054

出  处:《计算机应用》2022年第10期3124-3129,共6页journal of Computer Applications

基  金:国家自然科学基金联合基金资助项目(U19B2015)。

摘  要:传统无线通信系统由发射机和接收机组成,待传输的信息经过信道编码、调制、成型后通过天线发射出去。由于信道衰落、噪声和干扰等因素的影响,到达接收机的信号会存在较严重的失真,接收机需要从失真的信号中尽可能地恢复出原始信息。为解决此问题,提出基于多标签分类神经网络的多输入多输出(MIMO)智能接收机模型。该模型利用深度神经网络(DNN)替代接收机从信号到信息之间的整个信息恢复环节,并采用多标签分类算法代替多个二分类器实现多个比特的信息流恢复,而训练数据集为包含二进制相移键控(BPSK)与正交相移键控(QPSK)两种调制方式以及汉明编码与循环编码两种方式的正交信号。实验结果表明在噪声、瑞利衰落、干扰等情况下,使用传统Alamouti译码方法的接收机误码率(BER)为1E-3时,智能接收机已经实现了BER为0的恢复信息;在保持BER性能相同时,所提多标签分类算法比对比模型的多个二分类器算法在每个批次的训练时间上减少了约4 min。The traditional wireless communication system is composed of transmitters and receivers. The information to be transmitted is transmitted through antenna after channel coding, modulation, and shaping. Due to the influence of factors such as channel fading, noise, and interference, signals arriving at the receiver will have serious distortion, and the receiver needs to recover original information from distorted signals as much as possible. To solve this problem, a Multi-Input Multi-Output(MIMO) intelligent receiver model based on multi-label classification neural network was proposed. In this model, Deep Neural Network(DNN) was used to replace the entire information recovery link of receiver from signals to information, and multi-label classification algorithm was used to replace multiple binary classifiers to achieve multi-bit information flow recovery. The training dataset has quadrature signals that contains two modulation modes including Binary Phase Shift Keying(BPSK) and Quadrature Phase Shift Keying(QPSK) as well as two coding modes of Hamming coding and cyclic coding. Experimental results show that under conditions such as noise, Rayleigh fading, and interference, when the Bit Error Rate(BER) of receiver using the traditional Alamouti decoding method is 1E-3, the intelligent receiver realizes the recovered information with the BER of 0. While maintaining the same BER performance, the proposed multi-label classification algorithm reduces the training time of each batch by about 4 min compared with the multiple binary classifier algorithms of the comparison model.

关 键 词:无线通信系统 信息恢复 深度神经网络 智能接收机 多个二分类器 多标签分类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象