智能垃圾车箱体结构焊接变形数值预测及控制  

Numerical prediction and control of welding deformation of intelligent garbage truck box structure

在线阅读下载全文

作  者:徐丽平[1] XU Li-ping(Liming Vocational University,Fujian Quanzhou 362000,China)

机构地区:[1]黎明职业大学,福建泉州362000

出  处:《齐齐哈尔大学学报(自然科学版)》2022年第6期1-7,共7页Journal of Qiqihar University(Natural Science Edition)

基  金:福建省教育厅中青年教师教育科研项目(JAT191456)。

摘  要:智能垃圾车的大型箱体框架由多个冲压型板拼焊而成,焊接变形将严重影响全车各部件的组装和整车质量。为了减小箱体焊接变形,应用有限元数值模拟仿真,对箱体结构采取网格疏密结合的方式建立了六面体实体单元模型,通过分析3种焊接方案14种焊接顺序,得出变形量最小的焊接顺序,从而实现了大型箱体结构焊接变形的规律和表征的数值预测。仿真结果表明,箱体的焊接顺序对沿焊缝方向的变形影响较小,但在垂直于焊缝的两方向上变形差异较大;相对面施焊和相对面交叉施焊比顺次施焊的总体形变量更小,最大形变量降低了54.92%。经实践验证,采用优化的焊接顺序在焊接过程中能减少焊接变形,增加焊接结构可靠性。The large box frame of intelligent garbage truck is welded by multiple stamping plates,and the welding deformation will seriously affect the assembly and quality of the whole vehicle.In order to reduce the welding deformation of the box,the finite element numerical simulation method is used to establish a hexahedral solid element model for the box structure by combining sparse and dense meshes,and 14 welding sequences of 3 welding schemes are analyzed.The numerical prediction of welding deformation and characterization of large box structure is realized,and the welding sequence with minimum welding deformation is optimized.The simulation results show that the welding sequence of the box has little influence on the deformation along the weld direction,but the deformation is quite different in the two directions perpendicular to the weld,and the overall deformation of opposite welding and cross welding is smaller than that of sequential welding.the maximum deformation is reduced by 54.92%.The practice shows that the optimized welding sequence can reduce the welding deformation,increase the reliability of the welding structure,and provide welding quality guarantee for the subsequent equipment assembly.

关 键 词:大型箱体 焊接变形 数值预测 焊接顺序 

分 类 号:TG404[金属学及工艺—焊接]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象