机构地区:[1]Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences,Beijing 100081,P.R.China [2]Liaoning Province Modern Agricultural Production Base and Construction Engineering Center,Shenyang 110033,P.R.China [3]Shandong General Station of Agricultural Technology Extension,Jinan 250100,P.R.China
出 处:《Journal of Integrative Agriculture》2022年第11期3368-3381,共14页农业科学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(41601226);the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences。
摘 要:Super-absorbent polymers(SAPs)are widely used chemical water-saving materials,which play an active role in the accumulation of soil water and the improvement of soil structure.Little is known about their performance with repeated usage or about factors influencing their efficiency under alternate wetting and drying cycles.In this study,various concentrations of SAP(0,0.1,0.2 and 0.3%)in soil following three continuous wetting and drying cycles(T1,T2 and T3),were studied to determine effects on soil structure stability and hydro-physical properties.The results indicated that the SAP improved soil water supply capacity under conditions of mild drought(T2)and sufficient irrigation(T3)at concentrations of 0.2 and 0.3%,but a reduction was observed under severe drought conditions(T1),which was negatively correlated with the SAP concentration.The physical adsorption of the SAP by soil and the chemical connection between the SAP and soil mineral colloids as Si-O-Si bonds,-OH bonds and different crystalline silica were the important factors that directly lead to the reduction of water retention capacities of the SAP with alternating wet and dry conditions.Compared with the control,the soil liquid phase ratios of the SAP treatments were increased by8.8-202.7%in the T1 and T2 cycles,which would have led to a decrease in the soil air phase ratios.After repeated wetting and drying cycles,the SAP treatments increased the amount of>0.25 mm soil aggregates and the contents of water-stable macro-aggregate(R_(0.25)),and decreased the amount of<0.053 mm soil aggregates,especially with higher concentrations of the SAP.Increases in mean weight diameter(MWD)and geometric mean diameter(GMD),and declines in fractal dimension(D)and unstable aggregates index(E_(LT))were all observed with the SAP treatments,which indicated an improvement in soil stability and structure.It was concluded that the distribution and stability of soil aggregates and soil water supply capacity was closely related to SAP concentration,soil moisture condition and t
关 键 词:super-absorbent polymer(SAP) soil water soil structure soil aggregate soil colloid
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...