检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shiqian Tan Yizhen Wang Igor Ying Zhang Xin Xu 谭诗乾;王艺臻;张颖;徐昕(复旦大学化学系,上海市分子催化与创新材料重点实验室,上海市生物活性小分子重点实验室,计算物理科学教育部重点实验室,能源材料化学协同创新中心,上海200433)
出 处:《Chinese Journal of Chemical Physics》2022年第5期720-726,I0011,共8页化学物理学报(英文)
基 金:supported by the National Natural Science Foundation of China(No.21973015,No.22125301,No.91427301);the Science Challenge Project(TZ2018004);Innovative Research Team of High-Level Local universities in Shanghai;a Key Laboratory Program of the Education Commission of Shanghai Municipality(ZDSYS14005)。
摘 要:Accurate description of potential energy curves driven by nonbonded interactions remains a great challenge for pure density functional approximations(DFAs).It is because the Rdecay behavior of dispersion cannot be intrinsically captured by the(semi)-local ingredients and the exact-exchange used in the popular hybrid DFAs.Overemphasizing the accuracy on the equilibrium region for the functional construction would likely deteriorate the overall performance on the other regions of potential energy surfaces.In consequence,the empirical dispersion correction becomes the standard component in DFAs to treat the non-bonded interactions.In this Letter,we demonstrate that without the use of empirical dispersion correction,doubly hybrid approximations,in particular two recently proposed rev XYG3 and XYG7 functionals,hold the promise to have a balanced description of non-bonded interactions on the whole potential energy curves for several prototypes ofπ-π,CH/π,and SH/πinteractions.The error of rev XYG3 and XYG7 for non-bonded interactions is around 0.1 kcal/mol,and their potential energy curves almost coincide with the accurate CCSD(T)/CBS curves.
关 键 词:Density functional theory Non-bonded interaction Doubly hybrid approximations xDH@B3LYP model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.72.114