检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:兰云伟 崔智高 苏延召 汪波 王念 李艾华 LAN Yunwei;CUI Zhigao;SU Yanzhao;WANG Bo;WANG Nian;LI Aihua(Graduate School,Rocket Force University of Engineering,Xi’an 710025,China)
出 处:《计算机工程》2022年第11期231-239,共9页Computer Engineering
基 金:国家自然科学基金(61501470)。
摘 要:基于深度学习的图像去雾方法在合成数据集上表现良好,但在真实场景中应用时存在去雾不彻底、颜色失真等问题。提出一种新的单幅图像去雾网络,该网络包含特征提取、特征融合2个模块。在特征提取模块中,通过残差密集块和具有空间注意机制的特征提取块分别提取图像的局部特征和全局特征。在特征融合模块中,利用通道注意力机制对局部特征图和全局特征图进行通道加权,并通过卷积操作融合加权后的局部特征图与全局特征图。最后,采用门控网络自适应结合3个不同深度的融合特征图,以恢复高质量的去雾图像。实验结果表明,所提网络在室内数据集下的峰值信噪比(PSNR)和结构相似度(SSIM)分别为33.04 dB、0.983,在HAZERD数据集下的PSNR和SSIM分别比GridDehazeNet网络高出1.33 dB和0.041。同时,该网络的模型参数量和浮点运算数分别为0.34M和16.06×109frame/s,具有较低复杂度,对合成图像和真实图像均可取得理想的去雾效果。Learning-based dehazing methods perform well with a synthetic dataset but have certain problems,such as residual haze and color distortion,in a real scene.To solve these problems,a single-image dehazing network based on double-scale feature fusion is proposed in this paper.The proposed network consists of two parts:feature extraction and multiscale feature fusion.In the feature extraction stage,the local and global features of the input image are extracted through the residual dense and feature extraction blocks,respectively,using a spatial attention mechanism.In the feature fusion stage,the local and global feature maps are channel weighted using the channel attention mechanism and fused through a convolution operation.Finally,the gated network adaptively combines three feature maps from different depths to restore the high-quality haze-free images.The experimental results show that the Peak Signal-to-Noise Ratio(PSNR)of the proposed network under indoor dataset is 33.04 dB,and the Structural Similarity(SSIM)is 0.983.And the PSNR and SSIM are 1.33 dB and 0.041 higher than that of the GirdDehazeNet network under HAZERD dataset,respectively.In addition,there are 0.34M model parameters,and the Floating Point Operations(FLOPs)of the network occur at a rate of 16.06×109frames/s,it shows that the proposed network achieves ideal dehazing results for both synthetic and real images with low complexity.
关 键 词:深度学习 图像去雾 注意机制 特征融合 门控网络
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7