检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨子兰 朱娟萍[2] 李睿 YANG Zilan;ZHU Juanping;LI Rui(Department of Information,Lijiang Culture and Tourism College,Lijiang 674199;School of Mathematics and Statistics,Yunnan University,Kunming 650091)
机构地区:[1]丽江文化旅游学院信息学院,丽江674199 [2]云南大学数学与统计学院,昆明650091
出 处:《工程数学学报》2022年第5期739-749,共11页Chinese Journal of Engineering Mathematics
基 金:云南省教育厅科学研究基金(2016ZDX152,2017ZDX270,2022J1217)。
摘 要:将通信网络扩张升级问题抽象为带约束的支撑树形图容量扩张问题(CEPAC),并针对该问题进行研究。首先,由0-1背包问题归约出CEPAC问题的实例,进而分析CEPAC问题的NP-困难性。其次,采用支撑树Megiddo参数搜索和拟阵交的Megiddo参数搜索策略,建立支撑树形图多面体与拟阵交之间的关系,将一棵最优支撑树形图通过基本变换转换成与之相邻的最优支撑树形图,为CEPAC问题设计一个(2,1)-近似的带约束的拟阵交算法。最后,考虑最小支撑树形图容量扩张问题(CEPMA),并利用字典序方法对朱–刘算法进行改进求解CEPMA问题。We consider the problem of communication network expansion and upgrading,which is abstracted as the capacity expansion problem of spanning arborescence with constraints(CEPAC)in directed networks.Firstly,we prove that CEPAC problem is NP-hard by constructing an instance of CEPAC based on 0-1 knapsack problem.Secondly,by Megiddo parameter search of the spanning tree and Megiddo parameter search strategy of matroid intersection,we establish the relationship between the spanning arborescence polytope and the matroid intersection,and transform an optimal spanning arborescence into an adjacent optimal spanning arborescence through the basic transformation.Then,we design a(2,1)-approximate matroid intersection algorithm with constraints for CEPAC problem.Finally,we discuss the capacity expansion problem minimum arborescence(CEPMA)and solve it by modifying ChuLiu-Edmonds algorithm with lexicographical order.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.195.228