检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈欣影 丛源 钱池 CHEN Xinying(Wendeng District Meteorological Bureau,Weihai,Shandong 264400)
机构地区:[1]文登区气象局,山东威海264400
出 处:《农业灾害研究》2022年第9期151-153,共3页Journal of Agricultural Catastrophology
摘 要:计算机网络时代,机器学习方法不断更新并被广泛应用于金融、医学、生物学等多个领域。以进一步提高降水量预报准确率为目的,将机器学习方法应用于降水量预报,介绍了一种以随机森林为基础的汛期降水量预报模型,以郑州为例,使用随机森林预报汛期降水量,将随机森林的预报结果与BP神经网络的预报结果进行比较,结果显示,随机森林预报精度越高,准确率越高,同时避免了过度拟合的问题,稳定性强。Since the era of computer network,machine learning methods have been continuously updated and applied in many fields,such as finance,medicine,biology and so on.To improve the accuracy of precipitation prediction,in this paper,we apply machine learning method to precipitation forecast,and introduces a precipitation forecasting model in flood season based on random forest.Taking Zhengzhou as an example,compared the precipitation in flood period which was forecasted by random forest with those of BP neural network.The random forest’s prediction accuracy was proving to be better than BP’s,and avoids the problem of overfitting and has good stability.
分 类 号:P457.6[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222