检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王磊[1,2] 马磊娟[2] Wang Lei;Ma Leijuan(School of Economics and Management,Northwest University,Xi’an 710000,China;Basic Teaching Department,He’nan Polytechnic Institute,Nanyang 473000,China)
机构地区:[1]西北大学经济管理学院,西安710000 [2]河南工业职业技术学院基础教学部,河南南阳473000
出 处:《兵工自动化》2022年第11期32-36,53,共6页Ordnance Industry Automation
基 金:河南省2020年科技发展计划(202102210134);河南省高等学校青年骨干教师培养计划(2019GZGG098、2018GGJS229)。
摘 要:为提高风电场输出功率的预测精度,提出一种采用相似时段选取原则和基于主成分分析(principal component analysis,PCA)与多层自编码极限学习机(multi-layer auto encoder extreme learning machine,ML-AE-ELM)组合算法(PCA-ELM)的预测模型。通过关联度分析明确待测时段的相似时段范围,结合天气数据、机组状态和历史功率构建训练和测试样本,利用预测算法完成样本的训练和测试,得到输出功率预测结果并验证。实验结果表明:与常见的算法模型相比,该预测模型在不同装机容量和不同工作状态的风电场中均具有较高的预测精度,表现出良好的预测稳定性和泛化能力。In order to improve the forecasting accuracy of wind farm output power, a method based on the principle of similar time period selection and the principle of principal component analysis (PCA) is proposed. The forecasting model is based on the combination of PCA and multi-layer auto encoder extreme learning machine (ML-AE-ELM). Through the correlation analysis, the range of similar periods of time to be tested is determined, and the training and test samples are constructed by combining weather data, unit status and historical power, and the forecasting algorithm is used to complete the training and test of the samples, so as to obtain the forecasting results of output power and verify them. The experimental results show that compared with the common algorithm model, the proposed model has higher forecasting accuracy in different installed capacity and different working conditions of wind farms, and shows good forecasting stability and generalization ability.
关 键 词:风电功率预测 相似时段 主成分分析 多层自编码极限学习机
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.72.54