基于深度神经网络的电力工程数据聚类模型设计  被引量:9

Design of power engineering data clustering model based on deep neural network

在线阅读下载全文

作  者:杨文生 叶宝玉 周文奇 师潇然 宦晓超 YANG Wensheng;YE Baoyu;ZHOU Wenqi;SHI Xiaoran;HUAN Xiaochao(Inner Mongolia Electric Power Economic and Technological Research Institute,Hohhot 010090,China;Inner Mongolia Electric Power(Group)Co.,Ltd.,Hohhot 010090,China)

机构地区:[1]内蒙古电力经济技术研究院,内蒙古呼和浩特010090 [2]内蒙古电力(集团)有限责任公司,内蒙古呼和浩特010090

出  处:《电子设计工程》2022年第22期136-139,144,共5页Electronic Design Engineering

摘  要:针对实际应用中电力工程数据的维度不断升高,而现有聚类模型在处理高维数据时模型有效性降低的问题,提出一种基于深度神经网络的电力工程数据聚类模型。该模型在对原始高维数据进行预处理的基础上,引入了深度受限玻尔兹曼机神经网络。通过深度神经网络的无监督学习,将高维的原始电力工程数据进行非线性化处理,从而映射到低维空间。在低维空间采用模糊聚类算法对数据进行处理,得到对原始数据的有效聚类分析。采用实际电力工程数据对模型进行仿真验证的结果表明,该模型可以明显提高电力工程数据聚类的有效性。Aiming at the problem that the dimension of power engineering data is increasing in practical application,and the effectiveness of the existing clustering model is reduced when dealing with high⁃dimensional data,a power engineering data clustering model based on deep neural network is proposed.On the basis of preprocessing the original high⁃dimensional data,the model introduces the depth limited Boltzmann machine neural network.Through the unsupervised learning of the depth neural network,the high⁃dimensional original power engineering data are nonlinear processed,and then mapped to the low dimensional space.In the low dimensional space,the fuzzy clustering algorithm is used to process the data,and the effective clustering analysis of the original data is obtained.The simulation results show that the model can significantly improve the effectiveness of power engineering data clustering.

关 键 词:电力工程 聚类分析 深度神经网络 大数据分析 

分 类 号:TN99[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象