检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张超[1] 卢云[1,2] 刘磊 王涛[3] 张宪祥[1] 王东升[1] ZHANG Chao;LU Yun;LIU Lei;WANG Tao;ZHANG Xianxiang;WANG Dongsheng(The Second Department of Gastroenterology,The Affiliated Hospital of Qingdao University,Qingdao 266003,China)
机构地区:[1]青岛大学附属医院胃肠外二科,山东青岛266003 [2]山东省数字医学与计算机辅助手术重点实验室 [3]青岛大学附属医院放射科
出 处:《青岛大学学报(医学版)》2022年第5期656-661,共6页Journal of Qingdao University(Medical Sciences)
基 金:国家自然科学基金资助项目(81802473);青岛大学附属医院青年科研基金项目(3458)。
摘 要:目的利用更快的区域卷积神经网络(Faster RCNN)构建胃食管结合部腺癌(AEG)转移淋巴结人工智能(AI)自动诊断系统,协助临床诊疗。方法回顾性选取2015年12月—2019年12月在青岛大学附属医院治疗的248例AEG病人,随机分为训练组和测试组。利用训练组CT图像训练Faster RCNN,建立AI诊断系统。对测试组病人的增强CT图像进行测试,并通过绘制受试者工作特征(ROC)曲线和计算ROC曲线下面积(AUC)、正确率、特异度、灵敏度、阳性预测值、阴性预测值、测试耗时等评估指标,分析AI诊断系统识别转移淋巴结的能力。结果AI系统诊断单张CT图片的时间约为0.15 s。AI系统诊断转移淋巴结的AUC为0.912,正确率为0.870,特异度为0.883,灵敏度为0.858,阳性预测值为0.892,阴性预测值为0.847。结论本研究建立的AI诊断系统识别AEG增强CT图像转移淋巴结的准确率高,且识别速度比临床医师快,具有辅助临床诊疗的潜力。Objective To build an artificial intelligence(AI)-based automatic diagnostic system for metastatic lymph nodes in gastroesophageal junction adenocarcinoma(AEG)using a faster region-based convolutional neural network(Faster RCNN)to assist clinical diagnosis and treatment.Methods A total of 248 patients with AEG treated in The Affiliated Hospital of Qingdao University from December 2015 to December 2019 were retrospectively selected and randomly divided into training and test groups.The computed tomography(CT)images of the training group were used to train the Faster RCNN to establish an AI-based diagnostic system.The system was tested using the enhanced CT images of the test group.We analyzed the ability of the system to identify metastatic lymph nodes by drawing a receiver operating characteristic curve and calculating the area under the curve(AUC),accuracy,specificity,sensitivity,positive predictive value,negative predictive value,and test time.Results It took about 0.15 s for the AI system to diagnose a single CT image.The AI system for diagnosing metastatic lymph nodes had:AUC,0.912;accuracy,0.870;specificity,0.883;sensitivity,0.858;positive predictive value,0.892;and negative predictive value,0.847.Conclusion The AI-based diagnostic system in this study shows high accuracy in identifying metastatic lymph nodes in AEG on enhanced CT images,with faster recognition speed than clinicians.It has the potential to assist clinical diagnosis and treatment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49