园林景观评价中大数据技术的应用  

Application of Big Data Technology in Landscape Evaluation

在线阅读下载全文

作  者:隋洁 SUI Jie(Xuancheng Vocational and Technical College,Xuancheng Anhui 242000,China)

机构地区:[1]宣城职业技术学院,安徽宣城242000

出  处:《佳木斯大学学报(自然科学版)》2022年第5期119-123,155,共6页Journal of Jiamusi University:Natural Science Edition

摘  要:研究大数据技术在精准获取游客对园林景观的反馈信息上的应用效果。采用分词、情感分析等大数据处理技术构建出语义分析模型,并以国内某市景点为例,从旅游网站获得游客对该市景点的评价文本数据,输入该模型。分析模型输出结果。S1景点景观维护、交通便利度SD评分较低,分别为-2.02,-1.17;S2景点的植物覆盖率、生态性、知名度评分较低,分别为-1.86,-1.51,-1.45;S3景点交通便利度、趣味性指标评分较低,分别为-2.08,-2.57。S1景点管理效果较差,S2景区绿化较少,知名度较低,S3景区交通条件较差、娱乐设施不足。该模型能有效提取出游客对景点的反馈信息,对于辅助相关人员与机构管理园林景观具有一定应用价值。Objective To study the application effect of big data technology in accurately obtaining tourists'feedback on landscape.Methods A semantic analysis model was constructed by using big data processing technologies such as word segmentation and emotion analysis.Taking a domestic scenic spot as an example,the text data of tourists'evaluation of scenic spots in the city were obtained from the tourism website and input into the model.Analyze the model output results.Results The SD scores of S1 scenic spot landscape maintenance and traffic convenience were-2.02 and-1.17 respectively.The plant coverage,ecology and popularity scores of S2 scenic spots are low,which are-1.86,-1.51 and-1.45 respectively.The traffic convenience and interest index scores of S3 scenic spots are low,which are-2.08 and-2.57 respectively.Conclusion The management effect of S1 scenic spot is poor,S2 scenic spot has less greening and low popularity,and S3 scenic spot has poor traffic conditions and insufficient entertainment facilities.The model can effectively extract the feedback information of tourists to scenic spots,and has certain application value for assisting relevant personnel and institutions to manage landscape.

关 键 词:园林景观 旅游 大数据 SD法 情感分析 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象