A Nonlinear Optimal Control Method for Attitude Stabilization of Micro-Satellites  被引量:2

在线阅读下载全文

作  者:G.Rigatos M.Abbaszadeh K.Busawon L.Dala 

机构地区:[1]Unit of Industrial Automation Industrial Systems Institute 26504,Rion Patras,Greece [2]Department of ECSE Rensselaer Polytechnic Institute New York 12065,USA [3]Nonlinear Control Group University of Northumbria Newcastle NE18ST,UK [4]Department of Mechanical Engineering University of Northumbria Newcastle NE18ST,UK

出  处:《Guidance, Navigation and Control》2022年第3期30-67,共38页制导、导航与控制(英文)

摘  要:Attitude control and stabilization of micro-satellites is a nontrivial problem due to the highly nonlinear and multivariable structure of the satellites'state-space model.In this paper,a novel nonlinear optimal(H-infinity)control approach is developed for this control problem.The dynamic model of the satellite's attitude dynamics undergoesfirst approximate linearization around a temporary operating point which is updated at each iteration of the control algorithm.The linearization process relies on first-order Taylor series expansion and on the computation of the Jacobian matrices of the state-space model of the satellite's attitude dynamics.For the approximately linearized description of the satellite's attitude a stabilizing H-infinity feedback controller is designed.To compute the controller's feedback gains,an algebraic Riccati equation is solved at each time-step of the control method.The stability properties of the control scheme are proven through Lyapunov analysis.It is also demonstrated that the control method retains the advantages of linear optimal control that is fast and accurate tracking of the reference setpoints under moderate variations of the control inputs.

关 键 词:Micro-satellites attitude control nonlinear optimal control H-infinity control differentialfiatness properties Taylor series expansion Jacobian matrices Lyapunov analysis global asymptotic stability 

分 类 号:O232[理学—运筹学与控制论] V448.22[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象