检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯雨薇 王晓琳[1,2] 崔笑颜 杨军 FENG Yuwei;WANG Xiaolin;CUI Xiaoyan;YANG Jun(Key Laboratory of Noise and Vibration Research,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院噪声与振动重点实验室(声学研究所),北京100190 [2]中国科学院大学,北京100049
出 处:《应用声学》2022年第6期920-928,共9页Journal of Applied Acoustics
摘 要:针对区域有源降噪问题,为获得更优降噪效果,根据实际次级通路传递函数,提出次级声源优化布放的有源控制系统并详细比较了两种次级声源优化布放算法与次级声源均匀布放的实际降噪效果。应用的第一种次级声源优化算法是l_(2)范数约束的约束匹配追踪算法,第二种次级声源优化算法是l_(1)范数约束的稀疏正则化方法。在全消声室中利用扬声器线阵进行多通道有源降噪实验研究,实验结果表明,在200-1000 Hz,次级声源优化布放的控制系统的平均降噪量比次级声源均匀布放的控制系统的平均降噪量多5 dB左右;在1100-1900 Hz,次级声源优化布放的控制系统的平均降噪量比次级声源均匀布放的控制系统的平均降噪量多11-13 dB左右,次级声源优化布放的控制系统的降噪量分布更加均匀且次级声源输出能量更小。此外,两种优化算法中,稀疏正则化方法的降噪效果更佳。For local active noise control,an active noise control system with the optimized secondary source placement based on the actual secondary path transfer function is presented in this paper.The control system is used to achieve a better control performance.The actual control performance of the system using two optimal algorithms and the system using the uniformly placed secondary sources are compared in detail in this paper.The first method is the constrained matching pursuit algorithm with l_(2) norm constraint.The second method is a sparsity-inducing regularization strategy with l_(1) norm constraint.The multi-channel active noise control experiment is carried out using a loudspeaker line array in an anechoic chamber.The experiment illustrates that compared to the system using uniformly placed secondary sources,from 200 Hz to 1000 Hz,the system using the optimal algorithms provides about 5 dB average noise reduction advantage and from 1100 Hz to 1900 Hz,the system using the optimal algorithms provides about 11–13 dB average noise reduction advantage.The control system based on optimal algorithms has a lower power of secondary sources and the noise reduction is distributed more uniformly.Moreover,among the two optimal algorithms,the sparsity-inducing regularization method has a better control performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229