基于SE-ResNeXt网络的低信噪比LPI雷达辐射源信号识别  被引量:5

LPI radar emitter signals recognition in low SNR based on SE-ResNeXt network

在线阅读下载全文

作  者:徐桂光 王旭东[1] 汪飞[1] 胡国兵 高涌荇 罗泽虎 XU Guiguang;WANG Xudong;WANG Fei;HU Guobing;GAO Yongxing;LUO Zehu(College of Electronic and Information Engineering/College of Integrated Circuits,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Jinling Institute of Technology,Nanjing 211169,China)

机构地区:[1]南京航空航天大学电子信息工程学院/集成电路学院,江苏南京211106 [2]金陵科技学院电子信息工程学院,江苏南京211169

出  处:《系统工程与电子技术》2022年第12期3676-3684,共9页Systems Engineering and Electronics

基  金:江苏省高等学校自然科学研究重大项目(20KJA510008);江苏省基础研究计划(自然科学基金)(BK20161104)资助课题。

摘  要:针对低信噪比(signal to noise ratio,SNR)低截获概率(low probability of intercept,LPI)雷达脉内波形识别准确率低的问题,提出一种基于时频分析、压缩激励(squeeze excitation,SE)和ResNeXt网络的雷达辐射源信号识别方法。首先通过Choi-Williams分布(Choi-Williams distribution,CWD)获得雷达时域信号的二维时频图像(time-frequency image,TFI);然后进行TFI预处理降低噪声干扰和频率维的位置分布差异,以适应深度学习网络输入;最后在ResNeXt基础上加入扩张卷积和SE结构提取TFI特征,实现雷达辐射源分类。实验结果表明,SNR低至-8 dB时,该方法对12类常见LPI雷达波形的整体识别准确率依然能达到98.08%。Aiming at the problem of low signal to noise ratio(SNR)and low probability of intercept(LPI)radar pulse waveform recognition accuracy,a radar emitter signal recognition method based on time-frequency analysis,squeeze-excitation(SE)and ResNeXt network is proposed.Firstly,the radar time domain signal is transformed into a two-dimensional time-frequency image(TFI)by Choi-Williams distribution(CWD);then,the TFI pre-processing is used to reduce the noise interference and the difference in frequency dimension location distribution,adapting to deep learning network input;finally,the TFI features are extracted by adding dilated convolution and SE structure on the basis of ResNeXt to achieve radar emitter classification.The experimental results show that when the SNR is as low as-8 dB,the overall recognition accuracy of the method for 12 types of common LPI radar waveforms can still reach 98.08%.

关 键 词:低截获概率雷达波形 辐射源信号识别 残差网络 压缩激励结构 时频分析 

分 类 号:TN957.5[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象