A Survey of Federated Learning on Non-IID Data  

在线阅读下载全文

作  者:HAN Xuming GAO Minghan WANG Limin HE Zaobo WANG Yanze 

机构地区:[1]Jinan University,Guangzhou 510632,China [2]Changchun University of Technology,Changchun 130012,China [3]Guangdong University of Finance&Economics,Guangzhou 510320,China

出  处:《ZTE Communications》2022年第3期17-26,共10页中兴通讯技术(英文版)

摘  要:Federated learning(FL) is a machine learning paradigm for data silos and privacy protection,which aims to organize multiple clients for training global machine learning models without exposing data to all parties.However,when dealing with non-independently identically distributed(non-ⅡD) client data,FL cannot obtain more satisfactory results than centrally trained machine learning and even fails to match the accuracy of the local model obtained by client training alone.To analyze and address the above issues,we survey the state-of-theart methods in the literature related to FL on non-ⅡD data.On this basis,a motivation-based taxonomy,which classifies these methods into two categories,including heterogeneity reducing strategies and adaptability enhancing strategies,is proposed.Moreover,the core ideas and main challenges of these methods are analyzed.Finally,we envision several promising research directions that have not been thoroughly studied,in hope of promoting research in related fields to a certain extent.

关 键 词:data heterogeneity federated learning non-IID data 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象