Neursafe-FL:A Reliable,Efficient,Easy-to-Use Federated Learning Framework  被引量:1

在线阅读下载全文

作  者:TANG Bo ZHANG Chengming WANG Kewen GAO Zhengguang HAN Bingtao 

机构地区:[1]ZTE Corporation,Shenzhen 518057,China [2]The State Key Laboratory of Mobile Network and Mobile Multimedia Technology,Shenzhen 518055,China

出  处:《ZTE Communications》2022年第3期43-53,共11页中兴通讯技术(英文版)

摘  要:Federated learning(FL) has developed rapidly in recent years as a privacy-preserving machine learning method,and it has been gradually applied to key areas involving privacy and security such as finance,medical care,and government affairs.However,the current solutions to FL rarely consider the problem of migration from centralized learning to federated learning,resulting in a high practical threshold for federated learning and low usability.Therefore,we introduce a reliable,efficient,and easy-to-use federated learning framework named Neursafe-FL.Based on the unified application program interface(API),the framework is not only compatible with mainstream machine learning frameworks,such as Tensorflow and Pytorch,but also supports further extensions,which can preserve the programming style of the original framework to lower the threshold of FL.At the same time,the design of componentization,modularization,and standardized interface makes the framework highly extensible,which meets the needs of customized requirements and FL evolution in the future.Neursafe-FL is already on Github as an open-source project^(1).

关 键 词:federated learning PRIVACY-PRESERVING Neursafe-FL 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象