Metric learning for domain adversarial network  

在线阅读下载全文

作  者:Haifeng HU Yan YANG Yueming YIN Jiansheng WU 

机构地区:[1]College of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210023,China [2]College of Geography and Biological Information,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

出  处:《Frontiers of Computer Science》2022年第5期229-231,共3页中国计算机科学前沿(英文版)

基  金:This work was supported in part by the National Natural Science Foundation of China(Grant Nos.62071242,61571233,61901229,and 61872198);the Graduate Research and Innovation Projects of Jiangsu Province(KYCX20_0738).

摘  要:1 Introduction The existing domain adaptation methods[1,2]always aim to perform domain alignment between the source and target domain to alleviate the problem of domain shift[3].The target domain samples are likely to scatter on the classification boundary due to a lack of label information.Therefore,how to identify these overlapping classes in the target domain,called easily-confused classes,becomes the key to the improvement of classification performance.

关 键 词:FUSED ALIGNMENT SCATTER 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象