SGNet:融合多特征的密集人群计数网络  被引量:3

SGNet:Dense crowd counting network with multiple features

在线阅读下载全文

作  者:韩晶 王希畅 吕学强[1] 张凯 HAN Jing;WANG Xi-chang;LYU Xue-qiang;ZHANG Kai(Beijing Key Laboratory of Internet Culture Digital Dissemination,Beijing Information Science and Technology University,Beijing 100101,China;Research Center for Language Intelligence of China,Capital Normal University,Beijing 100089,China)

机构地区:[1]北京信息科技大学网络文化与数字传播北京市重点实验室,北京100101 [2]首都师范大学中国语言智能研究中心,北京100089

出  处:《计算机工程与设计》2022年第11期3001-3007,共7页Computer Engineering and Design

基  金:国家自然科学基金项目(61671070);北京市自然科学基金项目(4212020);北京市市教委科研计划基金项目(KM202111232001)。

摘  要:为解决密集人群计数任务中多列卷积核独立训练的限制及缺少针对性优化的问题,提出融合多尺度特征的密集人群计数算法SGNet。通过设计一种围绕相同感受野SRF(same receptive field)的特征融合方法,达到强化不同特征列之间的关联性,获得更多的特征细节和特征信息的目的;融合网格赢家通吃GWTA(grid winner-take-all)的思想设计损失函数,通过计算区域损失值着重优化重要特征。实验结果表明,与基线模型相比SGNet在任一数据集上的检测效果均有一定程度的提升,验证了该模型具有较强的鲁棒性及可移植性。To solve the limitation of independent training of multi column convolution kernel and the lack of targeted optimization in dense crowd counting task,a dense crowd counting algorithm SGNet integrating multi-scale features was proposed.By designing a feature fusion method around the same receptive field SRF(same receptive field),the correlation between different feature columns was strengthened and more feature details and feature information were obtained.The loss function was designed by integrating the idea of GWTA(grid winner-take-all),and the important features were optimized by calculating the regional loss value.Experimental results show that,compared with the baseline model,the detection effect of SGNet on any dataset is improved to a certain extent,and it is verified that the model has strong robustness and portability.

关 键 词:密集人群 人数估计 密度图生成 相同感受野 网格赢家通吃 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象