检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蓝峥杰 王烈[1] 黄莹[1] LAN Zhengjie;WANG Lie;HUANG Ying(School of Computer and Electrics Information,Guangxi University,Nanning 530004,China)
机构地区:[1]广西大学计算机与电子信息学院,南宁530004
出 处:《电讯技术》2022年第11期1683-1690,共8页Telecommunication Engineering
基 金:广西科技重大专项(桂科AA21077007)。
摘 要:针对当前人脸表情识别算法识别精度不高、网络鲁棒性差的缺点,设计了一种改进型Dense-HRNet特征提取网络,使用稠密连接机制强化了HRNet中浅层特征与深层特征间的传递和融合方式。同时,提出了一种基于基尼指数动态加权决策算法,根据每一卷积神经网络(Convolutional Neural Network,CNN)支路分类的确定性,为各支路输出动态地赋予权重,提高多路CNN支路融合决策的准确性,解决了由于单路CNN分类不确定性引起的偶然误差。在FER2013数据集和CK+数据集上进行实验,所提方法分类准确率分别达到73.36%和97.59%。For the shortcomings of the current facial expression recognition algorithms,such as low recognition accuracy and poor network robustness,a feature extraction network based on the improved Dense-HRNet is designed,and the dense connection mechanism is used to enhance the transmission and fusion of features with different resolutions in HDNet.At the same time,a dynamic weighted decision classification algorithm based on the Gini-index is proposed.According to the confidence degree of the classification probability,the fusion weight is automatically assigned to the output probability of each convolutional neural network(CNN)branch,in this way the network solves the instability of the single-channel CNN classification.Experiments on the FER2013 dataset and CK+dataset show that the proposed method achieves the classification accuracy of 73.36%and 97.59%,respectively.
关 键 词:人脸表情识别 Dense-HRNet 基尼指数 加权决策
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7