检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王新 卢垚[1] 袁雪[1] 赵婉婧 陈莉 刘敏娟[1] WANG Xin;LU Yao;YUAN Xue;ZHAO Wanjing;CHEN Li;LIU Minjuan(Agricultural Information Institute of Chinese Academy of Agricultural Sciences,Beijing 100081)
机构地区:[1]中国农业科学院农业信息研究所,北京100081
出 处:《农业图书情报学报》2022年第10期82-90,共9页Journal of Library and Information Science in Agriculture
基 金:中国农业科学院农业信息研究所2022年科技创新工程“数字农科院3.0建设”(CAAS-ASTIP-2016-AII)。
摘 要:[目的/意义]调研近年来作者同名消歧相关研究,厘清发展脉络,为后续研究提供参考。[方法/过程]使用Web of Science、Scopus、谷歌学术、ACM、IEEE、Elsevier、Springer、中国知网、维普数据库和万方数据库检索作者姓名消歧相关文献,选择其中46篇代表性文献进行综述。从数据对作者同名消歧方法的影响的角度审视、梳理相关研究的发展脉络。[结果/结论]按照消歧任务所依据的数据特点将相关研究方法分为3类。随着技术的进步,深度学习方法得到广泛采用。相对于模型的改进,基于深度学习的特征学习和表示,对作者同名消歧算法效果的提高更为显著,同时,为充分利用数据中包含的各种信息,3类算法呈现出相互结合、互补增益的态势。从文献调研情况看,可以从增量消歧和跨语种消歧等角度开展后续研究。[Purpose/Significance]This paper investigates the research on author name disambiguation published in recent years,and reviews the development context of relevant research from the perspective of the impact of data on author name disambiguation methods,so as to provide reference for further research.[Method/Process]The papers related to author name disambiguation were collected from English research databases such as Web of Science,Scopus,Google Academic,ACM Digital Library,IEEE Xplore,ScienceDirect,Scopus and Springer Link,and Chinese research databases such as CNKI,CQVIP and WANFANG.The search results cover the relevant papers published from 1998 to 2021.On the premise of giving consideration to authority,influence and novelty,46publicationswere selected for review.There are many types and structures of author name disambiguation data.For example,literature feature information is generally presented in unstructured text,and the extracted features can be stored and represented in two-dimensional tables;Citation information and interpersonal relationship are network relational data,which can be stored and represented by graphs,key value pairs or two-dimensional tables.The fundamental reason for different data structures lies in their semantic differences,but the data structure itself determines its applicable algorithm.According to the structure of characteristic data used in the author name disambiguation task and the different corresponding data processing algorithms,the relevant research is divided into three categories:1)disambiguation method based on literature characteristics,2)disambiguation method based on social network and 3)disambiguation method by integrating external knowledge.The impact of data on the author name disambiguation method is examined from the data level.[Results/Conclusions]The analysis found that with the progress of technology,deep learning methods have been widely used.Compared with the improvement of the model,the feature learning and representation based on deep learning can signif
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.206.125