机构地区:[1]中国船舶重工集团公司第七二五研究所海洋腐蚀与防护重点实验室,山东青岛266237 [2]哈尔滨工程大学材料科学与化学工程学院,哈尔滨150001
出 处:《表面技术》2022年第11期436-444,461,共10页Surface Technology
摘 要:目的研发含纳米结构Co_(3)O_(4)中间层的Ti/Co_(3)O_(4)/RuO_(2)-IrO_(2)阳极,并对其电化学析氧性能进行研究,以提升Ti/RuO_(2)-IrO_(2)金属氧化物阳极的电化学析氧性能。方法在Ti基底上电沉积制备Co(OH)_(2),烧结形成Co_(3)O_(4)纳米片结构,随后采用热分解工艺在Ti/Co_(3)O_(4)表面制备RuO_(2)-IrO_(2)电催化层,从而构建了Ti/Co_(3)O_(4)/RuO_(2)-IrO_(2)复合阳极。使用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X-射线衍射仪(XRD)和电化学工作站对涂层的微观表面形貌、物相组成、电化学性能等进行观察与分析。结果SEM显示出Ti/Co_(3)O_(4)纳米片上RuO_(2)-IrO_(2)的负载量随涂刷次数增加逐渐增多,最终完全遮盖Co_(3)O_(4)纳米片中间层。且随着RuO_(2)-IrO_(2)前驱体溶液涂覆次数的增加,XRD观察到RuO_(2)-IrO_(2)衍射峰强度在逐渐增大。TEM测试显示Co_(3)O_(4)中间层是由纳米颗粒堆叠组成且具有多孔结构。电化学极化曲线测试表明,涂覆三次RuO_(2)-IrO_(2)层的含Co_(3)O_(4)中间层阳极析氧电位最低,当电流密度达到10 mA/cm^(2)时,析氧电位仅为1.326 V(vs.SCE),低于无中间层的Ti/RuO_(2)-IrO_(2)阳极(1.413 V)。循环伏安测试表明,Ti/Co_(3)O_(4)/RuO_(2)-IrO_(2)阳极的伏安电量达到62.83 mC/cm^(2),相较于Ti/RuO_(2)-IrO_(2)阳极的23.65 mC/cm^(2)提高了166%。稳定性能试验表明,在经过1000次循环稳定性试验后,加入Co_(3)O_(4)纳米片中间层的复合阳极的伏安电量降低了35.94%,低于无中间层阳极48.88%的伏安电量损耗率。循环极化试验后的Ti/Co_(3)O_(4)/RuO_(2)-IrO_(2)复合阳极的电化学活性仍明显优于循环极化试验前的Ti/RuO_(2)-IrO_(2)阳极。结论Co_(3)O_(4)纳米片中间层的加入使得Ti/Co_(3)O_(4)/RuO_(2)-IrO_(2)阳极的电催化析氧性能和稳定性都得到了提升。In order to improve the electrocatalytic oxygen evolution performance of Ti/RuO_(2)-IrO_(2)anode,Ti/Co_(3)O_(4)/RuO_(2)-IrO_(2)composite anode with nano-structured Co_(3)O_(4)interlayer was developed.The electrochemical oxygen evolution performance of the composite anode was studied.The TA_(0) titanium plate sample(100 mm×20 mm×10 mm)was degreased and cleaned,then boiled in 10wt.%oxalic acid aqueous solution for 2 hours to remove the surface oxide film.The coating was prepared by potentiostatic electrodeposition.Electrodeposition adopts standard three-electrode system,and the plating solution is 0.05 mol/L aqueous solution of Co(NO_(3))_(2).The electrodeposition parameters were:applied potential-1.0 V(vs.SCE),solution temperature was 25℃,and deposition time was 30 min.After the electrodeposition was completed,the coated samples were placed in a muffle furnace and sintered at 350℃for 1 hour to obtain Co_(3)O_(4)nanosheet structure(Ti/Co_(3)O_(4)).H_(2)IrCl_(6)·6H_(2)O and RuCl_(3)·xH_(2)O were mixed and dissolved in n-butanol,and then stirred for 30 min to form a coating solution with a concentration of 0.3 mol/L(Ir∶Ru=1∶9).The solution was uniformly coated on the prepared Ti/Co_(3)O_(4)sample,then the sample was placed in a constant temperature oven at 120℃for 20 min,and finally calcined in a muffle furnace at 500℃for 1 hour.The above process was repeated 1 to 5 times to obtain Ti/Co_(3)O_(4)/RuO_(2)-IrO_(2)composite anodes with different RuO_(2)-IrO_(2)loadings.Then,the micro morphology of the coating was observed by scanning electron microscope(JSM-6700F)and transmission electron microscope(TECNAI G2 F20 s-twin).The component is analyzed by the EDS spectrum of each selected point taken by an energy spectrometer.Analyze the phase composition of the coating by an X-ray diffractometer(D8 Advance).Finally,electrochemical analysis was performed using an electrochemical workstation(Parstat 2273),and the samples were subjected to potentiodynamic polarization tests,cyclic voltammetry tests and cyclic st
关 键 词:RuO_(2)-IrO_(2) Co_(3)O_(4)纳米片 电催化 析氧 金属氧化物阳极 伏安电量
分 类 号:TG174.2[金属学及工艺—金属表面处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...