检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵潇雅 郜志英[1] 周晓敏[1] 宋寅虎 ZHAO Xiaoya;GAO Zhiying;ZHOU Xiaomin;SONG Yinhu(School of Mechanical Engineering,University of Science and Technology Beijing,Beijing 100083,China)
出 处:《振动与冲击》2022年第22期202-210,共9页Journal of Vibration and Shock
基 金:国家自然科学基金(51775038)。
摘 要:冷连轧颤振诱发机理复杂多变,颤振问题的解决需要通过大数据驱动的信息挖掘对机理模型进行补充。该研究针对某冷连轧机现场采集的工艺参数及振动数据,通过函数型数据分析(functional data analysis,FDA)方法进行预处理,实现多源异构时序数据的频率协同;采用SelectKBest算法对影响颤振的多种工艺参数进行特征选择,筛选出与振动相关性较强的因素,构造样本空间;基于长短时记忆(long short-term memory,LSTM)神经网络建立振动能量值的预测模型,并与径向基函数(radial basis function,RBF)神经网络、循环神经网络(recurrent neural network,RNN)模型进行比较。结果表明,LSTM模型具有较高的预测精度,同时采用阈值法验证该模型能有效地预测颤振的发生。The induced mechanism of cold tandem rolling chatter is complex and changeable, and in order to solve the chatter problem, it needs to supplement a mechanism model through big data-driven information mining. Based on the process parameters and vibration data collected on-site in cold tandem rolling mills, through preprocessing the data by the functional data analysis(FDA) method, the frequency coordination of multi-source heterogeneous time series data was achieved, thereby improving the accuracy of the sample expansion. The feature selection for multi kinds of process parameters that strongly affect the chatter was made by use of the SelectKBest algorithm to construct a sample space. A prediction model for vibration energy was established based on the long short-term memory(LSTM) neural network, and the results were compared with those of the radial basis function(RBF) neural network and the recurrent neural network(RNN) models. The results show the higher prediction accuracy of the LSTM model. And the threshold method was used to verify that the model can effectively predict the occurrence of chatter.
关 键 词:冷连轧颤振 多源异构时序数据 函数型数据分析(FDA) 长短时记忆(LSTM)神经网络
分 类 号:TH113[机械工程—机械设计及理论] TG331[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.185.110