检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋建熙 李兴科 于哲 李西兵[1] Song Jianxi;Li Xingke;Yu Zhe;Li Xibing(College of Mechanical and Electrical Engineering,Fujian Agriculture and Forestry University,Fuzhou,350002,China)
机构地区:[1]福建农林大学机电工程学院,福州市350002
出 处:《中国农机化学报》2022年第12期170-177,共8页Journal of Chinese Agricultural Mechanization
基 金:福建农林大学科技创新专项基金项目(CXZX2020132B)。
摘 要:在城市规划与园林景观中,人工养护的草坪起到美化环境的作用,但是各类草坪杂草的滋生,严重损害景观草坪的观赏性。而人工分辨杂草费时费力,影响后续的除草效率。因此,借助深度学习的研究成果,对现有的Retina-Net目标检测模型进行针对性改进,通过提取训练集目标图像特征信息、增设多尺度感受野、改进软池化层等方式,提升模型的杂草检测和种类分辨的能力,有助于后续除草工作的高效展开。最终试验对6类杂草的识别率分别为85.3%,84%,89.6%,86.7%,95.1%,91.5%。相比较于其他主流目标检测算法,识别率分别提高2.2%~9.3%。In urban planning and garden landscape, the artificial lawn plays a role in beautifying the environment, but the breeding of all kinds of lawn weeds seriously damages the ornamental ability of the landscape lawn. The artificial identification of weeds is time-consuming and laborious, which affects the subsequent weeding efficiency. Therefore, based on the research results of deep learning, this study improves the existing Retina-Net target detection model by extracting the target image feature information of the training set, adding multi-scale receptive field, improving the soft pool layer and other methods to improve the ability of weed detection and species discrimination of the model, which is conducive to the efficient development of subsequent weeding work. The recognition rates of six kinds of weeds in the final experiment were 85.3%, 84%, 89.6%, 86.7%, 95.1% and 91.5% respectively. Compared with other mainstream target detection algorithms, the recognition rate is improved by 2.2% to 9.3% respectively.
关 键 词:Retina-Net 图像处理 卷积神经网络 目标检测 感受野 软池化
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.198.219