检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张虎[1] 王宇杰 谭红叶[1] 李茹[1] ZHANG Hu;WANG Yu-Jie;TAN Hong-Ye;LI Ru(School of Computer and Information Technology,Shanxi University,Taiyuan 030006)
机构地区:[1]山西大学计算机与信息技术学院,太原030006
出 处:《自动化学报》2022年第11期2718-2728,共11页Acta Automatica Sinica
基 金:国家重点研发计划(2018YFB1005103);国家自然科学基金(62176145);山西省自然科学基金(201901D111028)资助。
摘 要:机器阅读理解(Machine reading comprehension,MRC)是自然语言处理领域中一项重要研究任务,其目标是通过机器理解给定的阅读材料和问题,最终实现自动答题.目前联合观点类问题解答和答案依据挖掘的多任务联合学习研究在机器阅读理解应用中受到广泛关注,它可以同时给出问题答案和支撑答案的相关证据,然而现有观点类问题的答题方法在答案线索识别上表现还不是太好,已有答案依据挖掘方法仍不能较好捕获段落中词语之间的依存关系.基于此,引入多头自注意力(Multi-head self-attention,MHSA)进一步挖掘阅读材料中观点类问题的文字线索,改进了观点类问题的自动解答方法;将句法关系融入到图构建过程中,提出了基于关联要素关系图的多跳推理方法,实现了答案支撑句挖掘;通过联合优化两个子任务,构建了基于多任务联合学习的阅读理解模型.在2020中国“法研杯”司法人工智能挑战赛(China AI Law Challenge 2020,CAIL2020)和HotpotQA数据集上的实验结果表明,本文提出的方法比已有基线模型的效果更好.Machine reading comprehension(MRC),which aims to understand the question and the relevant article to answer questions automatically,is an important research task in natural language processing.Recently,the multitask joint learning research combining opinion question solving and answer evidence mining has attracted much attention.Although methods proposed by such researches always provide both the answer and the relevant evidence simultaneously,neither are the existing methods handling the opinion-type questions good at identifying the clues to the answer,nor are the previous methods mining the answer evidence good at capturing the dependency relationship between words in the given paragraph.Therefore,the method to solve the opinion-type questions has been improved by further exploring the related text clues within the given reading materials through utilizing multi-head self-attention(MHSA);a multi-hop reasoning method realizing the mining of supporting sentences to the answer has been developed by integrating syntactic relation into the construction process of the element graph;a multi-task joint learning model for MRC has been constructed by optimizing the two sub-tasks jointly.Experiments on MRC datasets of CAIL2020(China AI Law Challenge 2020)and HotpotQA show that the proposed method can provide better results than the existing baseline models.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222