检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李玉洁 韩进 刘恩爽 LI Yujie;HAN Jin;LIU Enshuang(College of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao,Shandong 266590,China)
机构地区:[1]山东科技大学计算机科学与工程学院,山东青岛266590
出 处:《中国科技论文》2022年第11期1236-1244,共9页China Sciencepaper
基 金:山东省自然科学基金资助项目(ZR2020KE023,ZR2021MD057)。
摘 要:针对酒瓶盖瑕疵会影响产品质量的问题,提出了一种酒瓶盖瑕疵YOLOv3-MRHA检测算法,基于YOLOv3算法,对其主干网络和特征提取层进行改进。为减少主干网络特征丢失现象,提出了多级特征融合(multilevel feature fusion,MFF)模块;为提高检测的准确率,增加了尺度为104×104的特征层,并构造了一种增强特征信息的残差特征增强(residual feature enhancement,RFE)模块;为提高深层特征层的检测能力,引入了空洞卷积,使浅层信息向下融合,在特征提取层使用通道注意力机制。结果表明,所提YOLOv3-MRHA算法的检测精度比YOLOv3算法提高近6%,可有效地提高瑕疵检测的准确率,满足工业质检的要求。Aiming at the problem that wine bottle cap defect would affect product quality,a wine bottle cap defect detection algorithm,YOLOv3-MRHA,was proposed.Based on YOLOv3 algorithm,its backbone and feature extraction layer were improved.Firstly,multilevel feature fusion(MFF)module was proposed to reduce the feature loss in backbone.Secondly,in order to improve the accuracy of detection,the scale was increased to 104×104,and the residual feature enhancement(RFE)module was used for enhancing feature information.Finally,in order to improve the detection ability of deep feature layer,the dilated convolution was introduced to fuse the shallow information downward,and the channel attention mechanism was used in the feature extraction layer.The result shows that the detection accuracy of YOLOv3-MRHA algorithm is nearly 6%higher than that of YOLOv3 algorithm.The algorithm effectively improves the accuracy of detection and meets the requirements of industrial quality inspection.
关 键 词:酒瓶盖瑕疵检测 多级特征融合 残差特征增强 空洞卷积 通道注意力机制
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.29.119