检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hongdan Yu Chen Lu Weizhong Chen Diansen Yang Honghui Li
机构地区:[1]State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan,430071,China [2]University of Chinese Academy of Sciences,Beijing,100049,China [3]China National Nuclear Corporation,Key Laboratory on Geological Disposal of High-level Radioactive Waste,China Institute for Radiation Protection,Taiyuan,030006,China
出 处:《Journal of Rock Mechanics and Geotechnical Engineering》2022年第6期1923-1932,共10页岩石力学与岩土工程学报(英文版)
基 金:financial support of the National Natural Science Foundation of China (Grant Nos.51979266,51879258 and 51991392)。
摘 要:Tamusu mudstone formation, located in the Alxa area in western Inner Mongolia, is considered a potential host formation for high-level radioactive waste(HLW) underground disposal in China. In this study, complementary analyses with X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), mercury intrusion porosimetry(MIP), and N_(2) physisorption isotherm were conducted on the Tamusu mudstone to characterize its physical characteristics and microstructural features, such as mineral compositions and pore structure. Several minerals, including carbonates, feldspar, clays and analcime, were identified in Tamusu mudstone by XRD. Images from FE-SEM show that pores in the Tamusu mudstone were dominantly on nanometer scale and generally located within their mineral matrix or at the interface with non-porous minerals. The combination of the MIP and N_2 physisorption curves indicated that the Tamusu mudstone has diverse pore sizes, a porosity varying from 2.34% to 2.84%, and a total pore volume in the range of 0.0065—0.0222 cm^(3)/g with the average pore diameter ranging from 9.6 nm to 19.23 nm. The specific surface area measured by MIP(2.572—5.861 m^(2)/g) was generally higher than that by N_(2) physisorption(1.29—3.04 m^(2)/g), due to the pore network effect, pore shape(e.g. ink-bottle shape), or technique limits. The results related to pore information can be applied as an input in the future to model single-or multi-phase fluid flow and the transport of radionuclides in porous geomedium by migration and diffusion.
关 键 词:Tamusu mudstone Pore structure Field emission scanning electron microscopy(FE-SEM) N_2 physisorption Mercury intrusion porosimetry(MIP)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158