基于机器视觉的螺杆启闭机智能防顶控制方案  被引量:3

Intelligent anti-top gate control scheme of screw hoist based on machine vision

在线阅读下载全文

作  者:金能 杨军 梁志开 吴刚 鲁晓军 李甘 JIN Neng;YANG Jun;LIANG Zhikai;WU Gang;LU Xiaojun;LI Gan(Changjiang Survey,Planning,Design and Research Co.,Ltd.,Wuhan 430010,China;Tibet Autonomous Region Laluo Hydro-junction and Irrigation Areas Management Bureau,Tibet 850000,China)

机构地区:[1]长江勘测规划设计研究有限责任公司,湖北武汉430010 [2]西藏自治区拉洛水利枢纽及灌区管理局,西藏拉萨850000

出  处:《人民长江》2022年第11期175-179,共5页Yangtze River

摘  要:螺杆启闭机在水利工程中应用广泛,然而螺杆式启闭机的特有结构使得闸门下落受阻且未及时停机时易出现顶闸事故,带来严重的安全隐患。对此,提出一种基于机器视觉的螺杆启闭机智能防顶闸控制方案:首先对螺杆在不同工况下的运行特征进行了分析;其次基于启闭机旁的高清摄像头,采用机器视觉算法对螺杆位置、运动速度等进行检测,实时分析闸门运动状态,对异常状况及时响应并停机。此方案提升了设备的利用率,相比于传统的轴销载荷保护方案,具有非接触式检测部署灵活、无需额外安装称重传感器等特点。研究成果可为信息化背景下螺杆启闭机等传统机电设备控制方案提供新的思路。Screw hoist is widely used in water conservancy projects,however,the unique structure of screw hoist is prone to anti-top gate accidents in case of gate falling blocked and not timely shutdown,bringing serious security risks.In this regard,an intelligent anti-top gate control scheme for screw hoist based on machine vision was proposed.Firstly,the operation characteristics of screw under different working conditions were analyzed.Secondly,based on the high-definition camera next to the hoist,the machine vision algorithm was used to detect the position and speed of the screw,analyzed the motion state of the gate in real time,respond to the abnormal situation in time and stop the machine.This scheme improves the utilization rate of the equipment.Compared with the traditional shaft pin load protection scheme,it has the characteristics of flexible deployment of non-contact detection and no additional installation of weighing sensors.The research results can provide a new idea for the control scheme of traditional electromechanical equipment such as screw hoist under the background of informatization.

关 键 词:螺杆启闭机 顶闸事故 机器视觉 

分 类 号:TV664[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象