检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张会择 岳仁宋[1] 张琦[2] 文愈龙 朱蔓佳[2] 文跃强[2] 蒋萃[2] 余宗明 赖宇[2] Zhang Huize;Yue Rensong;Zhang Qi;Wen Yulong;Zhu Manjia;Wen Yueqiang;Jiang Cui;Yu Zongming;Lai Yu(Chengdu University of Traditional Chinese Medicine,Chengdu 610075;School of Basic Medical Science,Chengdu University of Traditional Chinese Medicine,Chengdu 611137;Chinese Classics College,Chengdu University of Traditional Chinese Medicine,Chengdu 611137)
机构地区:[1]成都中医药大学,成都610075 [2]成都中医药大学基础医学院,成都611137 [3]成都中医药大学国学院,成都611137
出 处:《中药药理与临床》2022年第4期191-197,共7页Pharmacology and Clinics of Chinese Materia Medica
基 金:四川省中医药文化协同发展研究中心项目(编号:2020WH075);成都中医药大学2020年“杏林学者”学科人才科研提升计划学术骨干项目(编号:XSGG2020001)。
摘 要:目的:探索总结蜀地伤寒田曾流派用药规律及特色,以冀倒溯法度,明晰用药习惯、规律,测度其学派临床思想。方法:以田曾流派存世处方及医案收集整理为支撑,建立相关数据库。采用Microsoft Excel 2010进行处方药味、中药频次、功效、性味及归经统计;使用IBM SPSS Modeler 18.0软件中的Apriori算法进行关联规则分析;通过IBM SPSS Statistics 23.0进行聚类分析及因子分析。结果:纳入的464首处方中,药味多为5味~10味;最常用的中药为甘草、大枣、桂枝、白芍、生姜;中药功效以补虚、解表、清热、利湿、化痰、活血化瘀、温里为主;药性多为温、平、寒;药味以甘、辛、苦居多;归经以脾、肺、胃为主。对高频药物的数据挖掘结果显示,关联规则分析中置信度最高的是干姜+黄芩→甘草(100%),支持度最高的是大枣→甘草(50.43%),此二者是田曾流派运用的核心药物组合;系统聚类分析归为16大类;因子分析共提取15个公因子。结论:田曾流派用药法度与仲景法框架基础一贯,其取脾胃为枢,斡旋升降,平施补泄,尤对诸内科流派有参法之迹,其对经方之运用亦颇具特色,对原本伤寒体系有一定创新。Objective:To explore and summarize the medication rules and characteristics of Tianzeng(田曾)academic school against Shanghan(伤寒)in Sichuan Province,elucidate the methods,clarify the habit and regularity of medication,and verify the clinical thought of the school.Methods:The database was established on the basis of the collected prescriptions and medical records of Tianzeng academic school.Microsoft Excel 2010 was used for the statistics of number,frequency of use,efficacy,property,and Guijing(归经)of drugs in the prescriptions.The Apriori algorithm in IBM SPSS Modeler 18.0 was used for association rules analysis.Cluster analysis and factor analysis were performed by IBM SPSS Statistics 23.0.Results:A total of 464 prescriptions were included,involving 5~10 drugs in each prescription.The most commonly used drugs were Gancao(甘草),Dazao(大枣),Guizhi(桂枝),Baishao(白芍),and Shengjiang(生姜).The involved drugs were effective in Buxu(补虚),Jiebiao(解表),Qingre(清热),Lishi(利湿),Huatan(化痰),Huoxue(活血),Huayu(化瘀),and Wenli(温里).In terms of property,those drugs were Wen(温),Ping(平),and Han(寒)in Xing(性),and Gan(甘),Xin(辛),and Ku(苦)in Wei(味),and mainly acted on Pi(脾),Fei(肺),and Wei(胃).As revealed by data mining results of high-frequency drugs,Ganjiang(干姜)+Huangqin(黄芩)→Gancao(甘草)possessed the highest degree of confidence(100%)and Dazao(大枣)→Gancao(甘草)showed the highest degree of support(50.43%)in association rules analysis,which were two core drug combinations used by Tianzeng academic school.Sixteen categories were obtained from cluster analysis and 15 common factors were extracted from the factor analysis.Conclusion:The medication rules of Tianzeng academic school are consistent with the framework adopted by Zhang Zhongjing.It holds the view that Pi(脾)and Wei(胃)are pivotal in the whole body,governing the functions of Sheng(升)and Jiang(降)and being efficient in Pingshi(平施)and Buxie(补泄).It is deduced that it also learns from oth
分 类 号:R249[医药卫生—中医临床基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229