检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王万良[1] 董建杭 王铮 赵燕伟 张仁贡 李国庆 胡明志 WANG Wanliang;DONG Jianhang;WANG Zheng;ZHAO Yanwei;ZHANG Rengong;LI Guoqing;HU Mingzhi(School of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310000,China;School of Computer and Computational Sciences,Zhejiang University City College,Hangzhou 310015,China;Department of Mechanical Engineering,Zhejiang University City College,Hangzhou 310015,China;Zhejiang Yugong Information Technology Co.,Ltd.,Hangzhou 310000,China)
机构地区:[1]浙江工业大学计算机科学与技术学院,浙江杭州310000 [2]浙大城市学院计算机与计算科学学院,浙江杭州310015 [3]浙大城市学院机械工程系,浙江杭州310015 [4]浙江禹贡信息科技有限公司,浙江杭州310000
出 处:《计算机集成制造系统》2022年第11期3494-3509,共16页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金资助项目(61873240,51875524)。
摘 要:水库防洪调度问题(RFCO)是复杂的多目标问题(MOPs),具有众多复杂的约束条件,相互依存的决策变量,以及相互冲突的优化目标,传统研究多停留在将多目标问题转换为单目标问题解决,在实际应用中存在一定限制。鉴于此,提出一种针对水库防洪调度的多目标优化方法——文化鲸鱼算法(MOCWOA)。MOCWOA以文化算法(CA)为框架,在种群空间采用鲸鱼优化算法(WOA),在信度空间定义了3种知识结构以提高算法所得结果的多样性和收敛精度。MOCWOA先应用于典型测试函数的优化,之后进一步应用于实际的水库防洪调度问题,并与几种优秀的多目标优化算法进行对比,结果表明,无论是在典型测试函数上,还是在实际RFCO问题上,MOCWOA都具有一定的优势。Reservoir Flood Control Operation(RFCO)is a complex Multi-objective Problems(MOPs),which has many complex constraints,interdependent decision variables,and conflicting optimization objectives.Traditional research focuses on transforming multi-objective problem into single objective problem,which has some limitations in practical application.A Multi-objective Culture Whale Optimization Algorithm(MOCWOA)was presented for reservoir flood control operation.To improve the diversity and convergence accuracy of the results,the Cultural Algorithm(CA)was taken as MOCWOA's framework,the whale optimization algorithm was adopted in the population space,and three knowledge structures in the belief space were defined.MOCWOA was first tested on benchmark problem.Then it was further applied to the actual reservoir flood control operation problem,and compared with several well-known multi-objective optimization algorithms.The results showed that MOCWOA algorithm had a certain competitive advantage.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.54.37