检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜龙龙[1] 朱景建 王荣扬 陆学斌 于斌[3] Du Longlong
机构地区:[1]湖州职业技术学院,浙江湖州313000 [2]湖州市机器人系统集成与智能装备重点实验室,浙江湖州313000 [3]哈尔滨理工大学,黑龙江哈尔滨150000
出 处:《江苏农业科学》2022年第21期200-207,共8页Jiangsu Agricultural Sciences
基 金:国家自然科学基金(编号:52105283);浙江省基础公益研究计划(编号:LGN20E050001);浙江省湖州市自然科学基金(编号:2021YZ15)。
摘 要:针对当前水稻穴播机缺乏实时监测和自主调节机制,无法对播种状态进行实时修正的弊端,为进一步提升穴播机的核心性能指标,提出一种基于深度学习的水稻精量穴播排种系统。采用YOLOv5检测模型在自制水稻种粒数据集上进行特征训练,通过增加检测尺度和优化初始锚框参数增强算法模型对小目标颗粒对象的检测精度,将训练好的水稻种粒检测器与DeepSORT算法连接,实现对水稻种粒的追踪计数。机具控制端将检测模型输出结果与农艺指标进行对比,通过计算种粒数量偏差实时修正振送器送种速率,运用PID控制技术实时对排种状态进行自我调节,最终实现智能排种。研究结果显示,经过优化后的YOLOv5水稻种粒检测器准确率为98.6%,召回率为98.8%,平均精度为99.1%,相较于原版YOLOv5准确率上升了3.0百分点,召回率提升了3.6百分点,平均精度提升了3.2百分点;本设计水稻排种系统空穴率为1.33%,穴粒合格率为95.6%,符合水稻直播机国家标准,相较于未引入深度学习的样机空穴率下降了2.12百分点,穴粒合格率提升了8.73百分点。结果表明,本设计的水稻穴播排钟系统在检测性能和核心指标上均有提升,可以为传统农机与人工智能结合提供参考借鉴。
关 键 词:YOLOv5s DeepSORT 水稻 排种系统 深度学习
分 类 号:S223.23[农业科学—农业机械化工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.27