A novel robust aerodynamic optimization technique coupled with adjoint solvers and polynomial chaos expansion  被引量:4

在线阅读下载全文

作  者:Wei ZHANG Qiang WANG Fanzhi ZENG Chao YAN 

机构地区:[1]National Key Laboratory of Computational Fluid Dynamics,Beihang University,Beijing 100083,China [2]Aerospace Times Feipeng Company Limited,China Academy of Aerospace Electronics Technology,Kunshan 215000,China [3]China Academy of Aerospace Aerodynamics,Beijing 100074,China

出  处:《Chinese Journal of Aeronautics》2022年第10期35-55,共21页中国航空学报(英文版)

基  金:National Natural Science Foundation of China(No.11721202)。

摘  要:Uncertainty is common in the life cycle of an aircraft, and Robust Aerodynamic Optimization(RAO) that considers uncertainty is important in aircraft design. To avoid the curse of dimensionality in surrogate-based optimization, this study proposes an adjoint RAO technique called “R-Opt”. Polynomial Chaos Expansion(PCE) is coupled with the R-Opt technique to quantify uncertainty in the responses of the target(including its mean and standard deviation). Only one process of PCE model construction is required in each iteration, and the gradients of uncertainty can be inferred via chain rules. The proposed method is more efficient than prevalent methods,and avoids the problem of a disagreement over the best PCE basis from among a number of PCE models(especially in case of sparse PCE). It also supports the application of sparse PCE.Two benchmark tests and two airfoil cases were used to verify R-Opt, and the optimal solutions were deemed to be robust. It improved the mean aerodynamic performance and reduced the standard deviation of the target.

关 键 词:Adjoint technique Polynomial chaos expansion Robust design Uncertainty analysis Uncertainty gradient propagation 

分 类 号:V211.4[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象