Normalization of Indexed Differentials by Extending Grobner Basis Theory  

在线阅读下载全文

作  者:LIU Jiang NI Feng SONG Shihang DU Mingjun 

机构地区:[1]Department of Systems Science,University of Shanghai for Science and Technology,Shanghai 200093,China

出  处:《Journal of Systems Science & Complexity》2022年第5期2016-2028,共13页系统科学与复杂性学报(英文版)

基  金:supported by the National Natural Science Foundation of China under Grant No.11701370。

摘  要:It is a fundamental problem to determine the equivalence of indexed differential polynomials in both computer algebra and differential geometry.However,in the literature,there are no general computational theories for this problem.The main reasons are that the ideal generated by the basic syzygies cannot be finitely generated,and it involves eliminations of dummy indices and functions.This paper solves the problem by extending Grobner basis theory.The authors first present a division of the set of elementary indexed differential monomials E■ into disjoint subsets,by defining an equivalence relation on E■ based on Leibniz expansions of monomials.The equivalence relation on E■also induces a division of a Grobner basis of basic syzygies into disjoint subsets.Furthermore,the authors prove that the dummy index numbers of the sim-monomials of the elements in each equivalence class of E■ have upper bounds,and use the upper bounds to construct fundamental restricted rings.Finally,the canonical form of an indexed differential polynomial proves to be the normal form with respect to a subset of the Grobner basis in the fundamental restricted ring.

关 键 词:Canonical form Einstein summation convention free commutative monoid ring Grobner basis indexed differential polynomial 

分 类 号:O186.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象