检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:HANLONG CHEN LUZHE HUANG TAIRAN LIU AYDOGAN OZCAN
机构地区:[1]Electrical and Computer Engineering Department,University of California,Los Angeles,CA 90095,USA [2]Bioengineering Department,University of California,Los Angeles,CA 90095,USA [3]California Nano Systems Institute(CNSI),University of California,Los Angeles,CA 90095,USA,Electrical and Computer Engineering Department,University of California,Los Angeles,CA 90095,USA [4]David Geffen School of Medicine,University of California Los Angeles,Los Angeles,CA 90095,USA
出 处:《Light(Science & Applications)》2022年第9期2225-2234,共10页光(科学与应用)(英文版)
摘 要:Deep learning-based image reconstruction methods have achieved remarkable success in phase recovery and holographic imaging.However,the generalization of their image reconstruction performance to new types of samples never seen by the network remains a challenge.Here we introduce a deep learning framework,termed Fourier Imager Network(FIN),that can perform end-to-end phase recovery and image reconstruction from raw holograms of new types of samples,exhibiting unprecedented success in external generalization.FIN architecture is based on spatial Fourier transform modules that process the spatial frequencies of its inputs using learnable filters and a global receptive field.Compared with existing convolutional deep neural networks used for hologram reconstruction,FIN exhibits superior generalization to new types of samples,while also being much faster in its image inference speed,completing the hologram reconstruction task in~0.04 s per 1 mm^(2) of the sample area.We experimentally validated the performance of FIN by training it using human lung tissue samples and blindly testing it on human prostate,salivary gland tissue and Pap smear samples,proving its superior external generalization and image reconstruction speed.Beyond holographic microscopy and quantitative phase imaging,FIN and the underlying neural network architecture might open up various new opportunities to design broadly generalizable deep learning models in computational imaging and machine vision fields.
关 键 词:field. GENERALIZATION HOLOGRAPHIC
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.193