The Moduli Space of Stable Coherent Sheaves via Non-archimedean Geometry  

在线阅读下载全文

作  者:Yun Feng JIANG 

机构地区:[1]Department of Mathematics,University of Kansas,405 Snow Hall,1460 Jayhawk Blvd,Lawrence USA

出  处:《Acta Mathematica Sinica,English Series》2022年第10期1722-1780,共59页数学学报(英文版)

基  金:Partially supported by NSF(Grant No.DMS-1600997)。

摘  要:We provide a construction of the moduli space of stable coherent sheaves in the world of non-archimedean geometry,where we use the notion of Berkovich non-archimedean analytic spaces.The motivation for our construction is Tony Yue Yu’s non-archimedean enumerative geometry in Gromov-Witten theory.The construction of the moduli space of stable sheaves using Berkovich analytic spaces will give rise to the non-archimedean version of Donaldson-Thomas invariants.In this paper we give the moduli construction over a non-archimedean field K.We use the machinery of formal schemes,that is,we define and construct the formal moduli stack of(semi)-stable coherent sheaves over a discrete valuation ring R,and taking generic fiber we get the non-archimedean analytic moduli space of semistable coherent sheaves over the fractional non-archimedean field K.We generalize Joyce’s dcritical scheme structure in[37]or Kiem-Li’s virtual critical manifolds in[38]to the world of formal schemes,and Berkovich non-archimedean analytic spaces.As an application,we provide a proof for the motivic localization formula for a d-critical non-archimedean K-analytic space using global motive of vanishing cycles and motivic integration on oriented formal d-critical schemes.This generalizes Maulik’s motivic localization formula for the motivic Donaldson-Thomas invariants.

关 键 词:Non-archimedean Donaldson-Thomas theory Berkovich space analytic d-critical scheme motivic localization 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象