检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马骏 罗渝昆[2] 何雪磊 高菡静[2] 王坤 宋青[2] 王妍洁 陈淑媛 余桂花 Ma Jun;Luo Yukun;He Xuelei;Gao Hanjing;Wang Kun;Song Qing;Wang YanJie;Chen Shuyuan;Yu Guihua(Department of Ultrasound,Medical School of Chinese PLA,Beijing 100853,China;Department of Ultrasound,First Medical Center,Chinese PLA General Hospital,Beijing 100853,China;School of Information Sciences and Technology,Northwest University,Xi'an 710127,China;CAS Key Laboratory of Molecular Imaging,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China)
机构地区:[1]解放军医学院,北京100853 [2]解放军总医院第一医学中心超声科,北京100853 [3]西北大学信息科学与技术学院,西安710127 [4]中科院自动化研究所分子影像重点实验室,北京100190
出 处:《中华医学超声杂志(电子版)》2022年第3期256-261,共6页Chinese Journal of Medical Ultrasound(Electronic Edition)
摘 要:目的探讨基于卷积神经网络(CNN)构建的人工智能辅助诊断模型对肾钝性创伤超声诊断的应用价值。方法建立不同程度动物肾创伤模型,通过床旁超声仪采集正常肾及创伤肾超声图片,分成训练集及测试集,根据造模位置和超声造影结果,手动勾画出肾轮廓,采用3折交叉验证进行分类训练及测试。绘制受试者工作特征(ROC)曲线,计算人工智能辅助诊断模型的敏感度、特异度、准确性和曲线下面积(AUC)。结果采集正常肾图片共1737张,各级别创伤肾图片共2125张,经过对测试集的验证,该模型可自动对肾创伤有无进行分类,对肾创伤诊断的平均敏感度为73%、平均特异度为85%、平均准确性为79%、AUC为0.80,诊断价值较高。结论基于CNN构建的深度学习模型辅助床旁超声仪在诊断肾创伤有无分类中取得了较满意的结果。Objective To explore the application value of artificial intelligence aided diagnosis model based on convolutional neural network(CNN)in ultrasonic diagnosis of blunt renal trauma.Methods Rabbits were used to simulate different grades of renal trauma model of renal trauma of different degrees was established.The ultrasonic images of the normal kidney and renal trauma were collected by point of care ultrasound(POCUS)and divided into either a training or a test cohort.According to the modeling position and contrast-enhanced ultrasound results,the renal contour was manually drawn and classified for training,followed by 3-fold crossvalidation testing.The sensitivity,specificity,accuracy,and area under curve(AUC)of the artificial intelligence aided diagnosis model were calculated.Results A total of 1737 images of the normal kidney and 2125 images of traumatic kidney were collected.After the verification of the test set,the model can automatically classify the presence or absence of renal trauma.The average sensitivity for renal trauma diagnosis was 73%,the average specificity was 85%,the average accuracy was 79%,and the AUC was 0.80.Conclusion The deep learning assisted POCUS model constructed based on CNN has achieved satisfactory results in the diagnosis and classification of renal trauma.
分 类 号:R445.1[医药卫生—影像医学与核医学] R692[医药卫生—诊断学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33