检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jun Gao Hongliang Lu Jie Ma Xingxing Yu
机构地区:[1]School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China [2]School of Mathematics and Statistics,Xi’an Jiaotong University,Xi’an 710049,China [3]School of Mathematics,Georgia Institute of Technology,Atlanta,GA 30332,USA
出 处:《Science China Mathematics》2022年第11期2423-2440,共18页中国科学:数学(英文版)
基 金:supported by the National Key R and D Program of China(Grant No.2020YFA0713100);National Natural Science Foundation of China(Grant Nos.11871391,11622110 and 12125106);Fundamental Research Funds for the Central Universities,Anhui Initiative in Quantum Information Technologies(Grant No.AHY150200);National Science Foundation of USA(Grant No.DMS-1954134).
摘 要:Aharoni and Howard and,independently,Huang et al.(2012)proposed the following rainbow version of the Erd os matching conjecture:For positive integers n,k and m with n≥km,if each of the families F1,……,Fm⊆([n]k)has size more than max{(n k)−(n-m+1 k);(km-1 k)},then there exist pairwise disjoint subsets e1,……,em such that ei∈Fi for all i∈[m].We prove that there exists an absolute constant n0 such that this rainbow version holds for k=3 and n≥n_(0).We convert this rainbow matching problem to a matching problem on a special hypergraph H.We then combine several existing techniques on matchings in uniform hypergraphs:Find an absorbing matching M in H;use a randomization process of Alon et al.(2012)to find an almost regular subgraph of H−V(M);find an almost perfect matching in H−V(M).To complete the process,we also need to prove a new result on matchings in 3-uniform hypergraphs,which can be viewed as a stability version of a result of Luczak and Mieczkowska(2014)and might be of independent interest.
关 键 词:rainbow matching conjecture ERD
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.66