基于SDSoC散列函数改进的互联网信息安全技术研究  

Research on Internet Information Security Technology Based on SDSoC Hash Function Improvement

在线阅读下载全文

作  者:许彩芳[1] XU Caifang(Department of Computer Information,Suzhou Vocational and Technical College,Suzhou Anhui 234101,China)

机构地区:[1]宿州职业技术学院计算机信息系,安徽宿州234101

出  处:《曲靖师范学院学报》2022年第6期38-42,48,共6页Journal of Qujing Normal University

基  金:安徽省质量工程教研项目“OpenStack云平台部署虚拟仿真实训中心”(2019xfrx06)、“网站开发与网页设计教学团队”(2018jxtd051);安徽省教育厅自然科学重点项目“基于Spark的电商网站用户行为分析预测系统研究”(KJ2019A1058)。

摘  要:利用SDSoC技术,对传统的散列函数(Hash Function)算法进行改进,提出了基于SDSoC技术的信息加密算法优化模型,将基于传统硬件的散列函数算法与基于SDSoC技术的AES算法进行对比.结果表明,基于传统硬件的散列函数算法吞吐量较低,而基于SDSoC的AES算法吞吐量较高;当时钟周期为ap_clk、目标运行时间为Target、评估运行时间为Estimated以及误差范围时间为Uncertainty时,传统散列函数算法的运行时间大致处于8.17±1.26 ns范围,而基于SDSoC的AES算法运行时间介于8.11±1.20 ns范围,改进后的算法执行速度有较大提升.改进后算法资源利用率显著高于传统算法,能够很好地提升算法的性能,综合性能较高.Uses SDSoC technology to improve the traditional hash function(Hash Function) algorithm, and proposes an information encryption algorithm optimization model based on SDSoC technology. Algorithms are compared as well. The results show that the throughput of the hash function algorithm based on traditional hardware is lower, while the throughput of the AES algorithm based on SDSoC is higher;when the clock cycle is ap_clk, the target running time is Target, the evaluation running time is Estimated, and the error range time is Uncertainty, the running time of the traditional hash function algorithm is roughly in the range of 8.17±1.26, while the running time of the SDSoC-based AES algorithm is in the range of 8.11±1.20, and the execution speed of the improved algorithm is greatly improved. Therefore, the resource utilization rate of the improved algorithm is significantly lower than that of the traditional algorithm, which can improve the performance of the algorithm well, and the overall performance is higher.

关 键 词:SDSoC 散列函数 信息安全 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象