基于MobileNet V2的田间葡萄果穗成熟度判别  被引量:2

Grape ripeness discrimination based on MobileNet V2

在线阅读下载全文

作  者:张立 周文静 ZHANG Li;ZHOU Wenjing(Xinjiang University of Science and Technology,Korla 841000,Xinjiang,China)

机构地区:[1]新疆科技学院,新疆库尔勒841000

出  处:《新疆农机化》2022年第6期29-31,42,共4页Xinjiang Agricultural Mechanization

基  金:自治州科学技术研究计划项目(202201);自治区大学生创新创业训练计划项目(S202113561015)。

摘  要:葡萄的成熟度主要依靠人的感官判断,缺乏客观标准,严重影响葡萄的整体品质。针对以上问题,本文采用MobileNetV2轻量级的卷积神经网络模型对葡萄成熟度进行判别。田间采集红提葡萄图像共计380张,构建数据集,以不同着色度为指标,对数据集进行分类,并按7:2:1分为训练集、验证集、测试集,将训练集、验证集预处理后采用该数据集训练MobileNetV2模型。由测试集的试验结果,得到试验训练MobileNetV2模型所获得的分类准确率为87%。最后采用QT语言设计了可视化的界面。本文的研究将有利于推进葡萄采摘的自动化,降低葡萄采摘成本、提高葡萄的经济效益。The maturity of grapes mainly depends on human sensory judgment, lack of objective standards, which seriously affects the overall quality of grapes. In response to the above problems, this paper uses the MobileNet V2 lightweight convolutional neural network model to discriminate the ripeness of grapes. A total of 380 images of red grapes were collected in the field, and a data set was constructed. The data set was classified according to different coloring degrees, and divided into training set, validation set and test set according to 7:2:1. The dataset is used to train the MobileNet V2 model after preprocessing.According to the experimental results of the test set, the classification accuracy obtained by training the MobileNet V2 model in this paper is 87%. Finally, the visual interface is designed using QT language. The research in this paper will help to promote the automation of grape picking, reduce the cost of grape picking and improve the economic benefits of grapes.

关 键 词:红提葡萄 着色度 轻量卷积神经网络 果穗 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象