检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贺煜航 刘棪 陈刚[2] HE Yuhang;LIU Yan;CHEN Gang(Key Laboratory of Aerospace Information Security and Trusted Computing,Ministry of Education,Wuhan University,Wuhan 430072,China;School of Cyber Science and Engineering,Wuhan University,Wuhan 430072,China)
机构地区:[1]武汉大学空天信息安全与可信计算教育部重点实验室,武汉430072 [2]武汉大学国家网络安全学院,武汉430072
出 处:《计算机工程》2022年第12期261-269,共9页Computer Engineering
基 金:国家自然科学基金(U1936107)。
摘 要:心电图分析是一种被广泛应用的心脏疾病诊断方法。传统的心电图分析严重依赖医生个人水平,容易出现误诊、漏诊现象,效率较低,且不能有效利用高频信号提供的有价值信息。基于卷积神经网络(CNN)的心电图自动分类方法在一定程度上提高了诊断效率,但依然存在对高频信息利用不充分的问题,且单一的卷积神经网络由于受感受野的限制和权重共享的影响,导致无法充分利用全局信息,分类准确率有待提高。提出一种基于注意力机制与图卷积网络的心电图多标签分类模型MLECG-AGCN,通过设计基于注意力机制的CNN网络,提高网络对高频信号的利用率。引入图卷积网络,以有效利用全局信息和特征空间邻域样本信息,从而协助样本进行分类,提高分类结果的准确率。基于注意力机制的CNN网络通过高通滤波器突出原始信号的高频位置,生成注意力图,并将注意力图嵌入到原始信号中,增强网络关注高频信号的能力。在PTB-XL数据集上的实验结果表明,基于注意力机制的CNN网络与自适应图卷积网络的结合有效提高了心电图分类精度,与Multi-ECGNet、ResNet18、ResNet101等模型相比,MLECG-AGCN模型取得了较高的AUROC值,为0.943639。Electrocardiogram(ECG)analysis is a widely used diagnostic method for heart diseases..Traditional ECG analysis relies heavily on the personal level of doctors,which is prone to misdiagnosis and missed diagnosis.Moreover,it is inefficient and cannot effectively use the valuable information provided by high-frequency signals.The ECG automatic classification method based on Convolutional Neural Network(CNN)has improved the diagnostic efficiency to a certain extent;however,there is still the problem of insufficient utilization of high-frequency information,where a single CNN cannot make full use of the global information due to the restriction of the receptive field and the influence of weight sharing.Therefore,the classification accuracy needs to be improved.This paper proposes a Multi-Label Classification Model of Electrocardiogram Based on Attention Mechanism and Graph Convolutional Network(MLECG-AGCN).This model improves the network's utilization of high-frequency signals by designing CNN based on attention mechanism.The GCN is introduced to effectively use the global information and the neighborhood sample information of the feature space,to help the samples to classify and improve the accuracy of the classification results.Among them,the CNN based on attention mechanism highlights the high frequency position of the original signal through a high pass filter,generates an attention map,and embeds the attention map into the original signal to enhance the network's ability to focus on high frequency signals.Experimental results on PTB-XL dataset show that the combination of CNN based on attention mechanism and adaptive GCN effectively improves the classification accuracy of ECG.Compared with Multi-ECGNet,ResNet18,ResNet101,and other models,MLECG-AGCN model achieved a macro average the Area Under Receiver Operating Characteristic Curve(AUROU)value of 0.943639,which is higher than the aforementioned models.
关 键 词:心电图 图卷积网络 残差神经网络 注意力机制 多标签分类 PTB-XL数据集
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.222.1