检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨岳毅 王立德[1] 王冲 王慧珍 李烨 YANG Yueyi;WANG Lide;WANG Chong;WANG Huizhen;LI Ye(School of Electrical Engineering,Beijing Jiaotong University,Beijing 100044,China)
出 处:《西南交通大学学报》2022年第6期1342-1348,1385,共8页Journal of Southwest Jiaotong University
基 金:中国国家铁路集团有限公司科技研究开发计划(N2020J007)。
摘 要:多功能车辆总线MVB(multiple vehicle bus)用于传输重要的列车运行控制指令和监视信息,准确地诊断MVB网络故障是列车智能运维的基础,为此,提出一种将主动学习和深度神经网络相结合的MVB网络故障诊断方法.该方法采用堆叠去噪自编码器自动提取MVB信号物理波形特征,并将该特征用于训练深度神经网络来实现MVB网络故障模式分类;基于不确定性和可信度的高效主动学习方法,可解决实际应用中标记样本不足和人工标记成本高昂的问题,使用少量标记训练样本就能得到高性能的深度神经网络模型.实验结果表明:为达到90%以上分类准确率,所提方法只需要600个标记训练样本,小于随机采样方法所需标记训练样本数的2800个;在相同标记训练样本数下,所提方法在3种性能指标下均优于传统方法.Multiple vehicle bus(MVB)is employed to transmit important train operation control instructions and monitoring information,and accurate diagnosis of the fault types of MVB network is the basis of the intelligent operation and maintenance system.To this end,a fault diagnosis method for MVB network is proposed,which combines the active learning and deep neural networks.It adopts the stacked denoising autoencoder to automatically extract physical features from the electrical MVB signals;then the features are used to train a deep neural network classifier for identifying MVB fault classes.An efficient active learning method based on uncertainty and credibility can solve the problems of insufficient labeled samples and high costs of manual labeling in practical application.It can build a competitive classifier with a small number of labeled training samples.Experiment results demonstrate that to achieve a high accuracy above 90%,the proposed method requires 600 labeled training samples,which is less than 2800 labeled training samples required by random sampling method.With the same number of labeled samples,the proposed method can achieve the better performance as to three different metrics than traditional methods.
关 键 词:多功能车辆总线 故障诊断 主动学习 深度神经网络 堆叠去噪自编码器
分 类 号:U285.5[交通运输工程—交通信息工程及控制]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127