检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:武煜昊 王永生 徐昊 陈振 张哲 关世杰 WU Yuhao;WANG Yongsheng;XU Hao;CHEN Zhen;ZHANG Zhe;GUAN Shijie(College of Data Science and Application,Inner Mongolia University of Technology,Hohhot 010080,China;Inner Mongolia Autonomous Region Engineering&Technology Research Center of Big Data Based Software Service,Hohhot 010080,China)
机构地区:[1]内蒙古工业大学数据科学与应用学院,呼和浩特010080 [2]内蒙古自治区基于大数据的软件服务工程技术研究中心,呼和浩特010080
出 处:《计算机科学与探索》2022年第12期2653-2677,共25页Journal of Frontiers of Computer Science and Technology
基 金:内蒙古自治区自然科学基金(2021LHMS06001);内蒙古自治区高等学校科学研究项目(NJZY21321);内蒙古自治区科技重大专项项目(2020GG0094)。
摘 要:风电具有的波动性、间歇性等特点对并网造成一定程度的影响,提前进行风电功率预测是解决上述问题的一个重要途径。但传感器传输、网络通信等不可控因素的存在,导致采集到用于风电功率预测的数据存在异常值和缺失值,因此在进行风电功率预测前应当进行相应的异常值检测和缺失值插补操作。为进一步促进风电数据清洗及预测技术的发展,对当前现有模型及方法进行分析与总结,并对现有技术进行划分、对比。从时序数据出发,首先,对风电预测领域的异常值检测方法的研究现状进行分类、分析与总结,对现有异常检测方法所存不足与缺陷进行概述,并对未来发展中或将成为重点的研究方向进行展望;其次,将现有的缺失值处理方法的评价指标进行描述,根据处理方式的不同将处理技术按照常规处理方法、辨别式的插补方法、生成式的插补方法及物理特性方法进行分析与总结,并对现有研究中所存问题进行分析;最后,对现有研究中的预测方法、多层级预测及自适应预测系统的研究现状进行分析总结,并对现有预测存在的挑战及未来发展方向进行了总结与展望。Uncertainty and volatility of wind power generation,bring some serious challenges for the grid-connected wind power system.Prediction of wind power in advance is an important way to solve the above problems.Due to the existence of uncontrollable factors such as sensor transmission and network communication,the data collected for wind power prediction have abnormal values and missing values.Therefore,corresponding outlier detection and missing value interpolation operations should be performed before wind power prediction.To further promote the development of wind power data cleaning and prediction technology,current existing models and methods are analyzed and summarized,and the existing technologies are divided and compared.Starting from time series data,this paper first classifies,analyzes and summarizes the research status of outlier detection methods in the field of wind power prediction,summarizes the deficiencies and defects of existing anomaly detection methods,and prospects the research directions that may become the focus in the future development.Secondly,the evaluation indices of the existing missing value treatment methods are described.According to the different treatment methods,the processing techniques are analyzed and summarized according to the conventional treatment methods,discriminative interpolation methods,generative interpolation methods and physical characteristics methods,and the existing problems in the existing research are analyzed.Finally,the current research status of forecasting methods,multi-level forecasting and adaptive forecasting systems in existing research are analyzed and summarized,and the existing challenges and future development directions of existing forecasting are summarized and prospected.
关 键 词:深度学习 风电功率预测 异常值检测 缺失值插补 时间序列数据
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.194.224