STABILIZED NONCONFORMING MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY ON RECTANGULAR OR CUBIC MESHES  

在线阅读下载全文

作  者:Bei Zhang Jikun Zhao Minghao Li Hongru Chen 

机构地区:[1]School of Sciences,Henan University of Technology,Zhengzhou 450001,China [2]School of Mathematics and Statistics,Zhengzhou University,Zhengzhou 450001,China

出  处:《Journal of Computational Mathematics》2022年第6期865-881,共17页计算数学(英文)

基  金:This work is partially supported by National Natural Science Foundation of China(No.12001170);Key Scientific Research Projects in Colleges and Universities in Henan Province(No.21A110009);Research Foundation for Advanced Talents of Henan University of Technology(No.2018BS013).

摘  要:Based on the primal mixed variational formulation,a stabilized nonconforming mixed finite element method is proposed for the linear elasticity on rectangular and cubic meshes.Two kinds of penalty terms are introduced in the stabilized mixed formulation,which are the jump penalty term for the displacement and the divergence penalty term for the stress.We use the classical nonconforming rectangular and cubic elements for the displacement and the discontinuous piecewise polynomial space for the stress,where the discrete space for stress are carefully chosen to guarantee the well-posedness of discrete formulation.The stabilized mixed method is locking-free.The optimal convergence order is derived in the L^(2)-norm for stress and in the broken H^(1)-norm and L^(2)-norm for displacement.A numerical test is carried out to verify the optimal convergence of the stabilized method.

关 键 词:Mixed finite element method Nonconforming rectangular or cubic elements ELASTICITY LOCKING-FREE Stabilization 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象