检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xujia Chen
机构地区:[1]Department of Mathematics,Stony Brook University,Stony Brook,NY 11794,USA [2]Present Address:Department of Mathematics,Harvard University,1 Oxford Street,Cambridge,MA 02138,USA
出 处:《Peking Mathematical Journal》2022年第2期279-348,共70页北京数学杂志(英文)
基 金:Supported by NSF Grant DMS 1901979。
摘 要:The 2016 papers of Solomon and Tukachinsky use bounding chains in Fukaya’s A∞-algebras to define numerical disk counts relative to a Lagrangian under certain regularity assumptions on the moduli spaces of disks.We present a(self-contained)direct geometric analogue of their construction under weaker topological assumptions,extend it over arbitrary rings in the process,and sketch an extension without any assumptions over rings containing the rationals.This implements the intuitive suggestion represented by their drawing and Georgieva’s perspective.We also note a curious relation for the standard Gromov–Witten invariants readily deducible from their work.In a sequel,we use the geometric perspective of this paper to relate Solomon–Tukachinsky’s invariants to Welschinger’s open invariants of symplectic sixfolds,confirming their belief and Tian’s related expectation concerning Fukaya’s earlier construction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.27.125