A Geometric Depiction of Solomon–Tukachinsky’s Construction of Open Gromov–Witten Invariants  

在线阅读下载全文

作  者:Xujia Chen 

机构地区:[1]Department of Mathematics,Stony Brook University,Stony Brook,NY 11794,USA [2]Present Address:Department of Mathematics,Harvard University,1 Oxford Street,Cambridge,MA 02138,USA

出  处:《Peking Mathematical Journal》2022年第2期279-348,共70页北京数学杂志(英文)

基  金:Supported by NSF Grant DMS 1901979。

摘  要:The 2016 papers of Solomon and Tukachinsky use bounding chains in Fukaya’s A∞-algebras to define numerical disk counts relative to a Lagrangian under certain regularity assumptions on the moduli spaces of disks.We present a(self-contained)direct geometric analogue of their construction under weaker topological assumptions,extend it over arbitrary rings in the process,and sketch an extension without any assumptions over rings containing the rationals.This implements the intuitive suggestion represented by their drawing and Georgieva’s perspective.We also note a curious relation for the standard Gromov–Witten invariants readily deducible from their work.In a sequel,we use the geometric perspective of this paper to relate Solomon–Tukachinsky’s invariants to Welschinger’s open invariants of symplectic sixfolds,confirming their belief and Tian’s related expectation concerning Fukaya’s earlier construction.

关 键 词:Open Gromov-Witten invariants Bounding chains 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象