MOTIVIC VIRTUAL SIGNED EULER CHARACTERISTICS AND THEIR APPLICATIONS TO VAFA-WITTEN INVARIANTS  

在线阅读下载全文

作  者:Yunfeng JIANG 

机构地区:[1]College of Mathematics and Statistics,Shenzhen University,Shenzhen 518060,China Department of Mathematics,University of Kansas,KS 66045,USA

出  处:《Acta Mathematica Scientia》2022年第6期2279-2300,共22页数学物理学报(B辑英文版)

摘  要:For any scheme M with a perfect obstruction theory,Jiang and Thomas associated a scheme N with a symmetric perfect obstruction theory.The scheme N is a cone over M given by the dual of the obstruction sheaf of M,and contains M as its zero section.Locally,N is the critical locus of a regular function.In this note we prove that N is a d-critical scheme in the sense of Joyce.There exists a global motive for N locally given by the motive of the vanishing cycle of the local regular function.We prove a motivic localization formula under the good and circle compact C*-action for N.When taking the Euler characteristic,the weighted Euler characteristic of N weighted by the Behrend function is the signed Euler characteristic of M by motivic method.As applications,using the main theorem we study the motivic generating series of the motivic Vafa-Witten invariants for K3 surfaces.

关 键 词:motivic Euler characteristics dual obstruction cone motivic Vafa-Witten invariants K3 surfaces 

分 类 号:O186.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象