Visual knowledge guided intelligent generation of Chinese seal carving  被引量:2

在线阅读下载全文

作  者:Kejun ZHANG Rui ZHANG Yehang YIN Yifei LI Wenqi WU Lingyun SUN Fei WU Huanghuang DENG Yunhe PAN 

机构地区:[1]College of Computer Science and Technology,Zhejiang University,Hangzhou 310027,China [2]Alibaba-Zhejiang University Joint Institute of Frontier Technologies,Hangzhou 310027,China [3]School of Software Technology,Zhejiang University,Hangzhou 310027,China

出  处:《Frontiers of Information Technology & Electronic Engineering》2022年第10期1479-1493,共15页信息与电子工程前沿(英文版)

基  金:the Natural Science Foundation of Zhejiang Province,China(No.LZ19F020002);the Key R&D Program of Zhejiang Province,China(No.2022C03126)。

摘  要:We digitally reproduce the process of resource collaboration,design creation,and visual presentation of Chinese seal-carving art.We develop an intelligent seal-carving art-generation system(Zhejiang University Intelligent Seal-Carving System,http://www.next.zju.edu.cn/seal/;the website of the seal-carving search and layout system is http://www.next.zju.edu.cn/seal/search_app/)to deal with the difficulty in using a visual knowledge guided computational art approach.The knowledge base in this study is the Qiushi Seal-Carving Database,which consists of open datasets of images of seal characters and seal stamps.We propose a seal character generation method based on visual knowledge,guided by the database and expertise.Furthermore,to create the layout of the seal,we propose a deformation algorithm to adjust the seal characters and calculate layout parameters from the database and knowledge to achieve an intelligent structure.Experimental results show that this method and system can effectively deal with the difficulties in the generation of seal carving.Our work provides theoretical and applied references for the rebirth and innovation of seal-carving art.

关 键 词:Seal-carving Intelligent generation Deep learning Parametric modeling Computational art 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象