检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张毅 朱志成[3] 郑家文 高兴 ZHANG Yi;ZHU Zhicheng;ZHENG Jiawen;GAO Xing(School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing,Jiangsu,210044,P.R.China;Center for Applied Mathematics of Jiangsu Province/Jiangsu International Joint Laboratory on System Modeling and Data Analysis,Nanjing University of Information Science and Technology,Nanjing,Jiangsu,210044,P.R.China;School of Mathematics and Statistics,Lanzhou University,Lanzhou,Gansu,730000,P.R.China)
机构地区:[1]南京信息工程大学数学与统计学院,南京江苏210044 [2]南京信息工程大学江苏省应用数学中心/江苏省系统建模与数据分析国际合作联合实验室,南京江苏210044 [3]兰州大学数学与统计学院,兰州甘肃730000
出 处:《数学进展》2022年第6期1011-1028,共18页Advances in Mathematics(China)
基 金:Supported by NSFC(No.12071191,12101316)。
摘 要:本文通过构造一个合适的余乘,在一类含单位代数上构造了带权无穷小单位双代数.进一步,构造了Aguiar观点下的无穷小单位Hopf代数.作为应用,在含单位代数上分别构造了一个预李代数和一个新的李代数结构.接着,引入了带权拟三角无穷小单位双代数的定义,推广了Aguiar介绍的拟三角无穷小双代数.然后,证明了任一带权拟三角无穷小单位双代数都有一个叶型代数结构.最后,构造了矩阵代数上权为一λ的结合杨巴方程的解和权为λ的罗巴算子之间的双射.In this paper,we equip a unitary algebra with a weighted infinitesimal unitary bialgebraic structure via a construction of a suitable coproduct.Furthermore,an infinitesimal unitary Hopf algebra,under the view of Aguiar,is constructed on a unitary algebra.As an application,we construct a pre-Lie algebraic structure and then a new Lie algebraic structure on a unitary algebra.We introduce the concept of weighted quasitriangular infinitesimal unitary bialgebras,which generalize the quasitriangular infinitesimal bialgebras initiated by Aguiar.We then show that any weighted quasitriangular infinitesimal unitary bialgebra has a dendriform algebraic structure.Finally,we give a bijection between the solutions of the associative YangBaxter equation of weight-λand Rota-Baxter operators of weightλon matrix algebras.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.250.13