基于HHT和改进PNN的CSI人体动作识别研究  被引量:3

CSI human behavior recognition based on HHT and improved PNN

在线阅读下载全文

作  者:李新春[1] 张光锐 于洪仕[1] 吴彦东 LI Xinchun;ZHANG Guangrui;YU Hongshi;WU Yandong(College of Electrics and Information Engineering,Liaoning Technical University,Huludao 125105,P.R.China;College of Graduate Studies,Liaoning Technical University,Huludao 125105,P.R.China)

机构地区:[1]辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛125105 [2]辽宁工程技术大学研究生院,辽宁葫芦岛125105

出  处:《重庆邮电大学学报(自然科学版)》2022年第6期976-986,共11页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)

基  金:国家自然科学基金(61372058);辽宁省教育厅青年项目(LJ2019QL024)。

摘  要:为了有效判别真实摔倒动作与疑似摔倒动作、提高动作识别准确度,提出基于希尔伯特黄变换(Hilbert-Huang transform,HHT)和改进概率神经网络(probabilistic neural networks,PNN)的信道状态信息(channel state information,CSI)人体动作识别算法。对CSI的幅度与相位融合信号进行数据预处理,利用HHT来提取区分人体动作信息的瞬时幅值和瞬时频率作为分类特征构建特征矩阵,在遗传算法(genetic algorithm,GA)优化的PNN神经网络中训练出能有效检测真实摔倒和疑似摔倒动作的GA-PNN人体动作识别模型;利用训练好的识别模型对输入的CSI数据进行摔倒动作的判别。仿真实验表明,提出的算法能有效地检测真实摔倒和疑似摔倒动作,其识别准确度可达到97.18%,且误报率较低。To discriminate real and suspected fall actions effectively and improve the accuracy of action recognition,this paper proposes a CSI human action recognition algorithm based on Hilbert-Huang Transform(HHT)and improved Probabilistic Neural Networks(PNN).In the train phase,firstly,the amplitude and phase fusion signals of the acquired Channel State Information(CSI)are pre-processed.Secondly,HHT is applied to extract the instantaneous amplitude and instantaneous frequency of the fused signals to distinguish the human action information as the classification features to build the feature matrix.Finally,the GA-PNN human action recognition model,which can effectively detect real and suspected fall actions,is trained in the Genetic Algorithm(GA)optimized PNN neural network.In the test phase,the input CSI data is used to discriminate the fall actions through the trained recognition model.Through simulation experiments,it is verified that the algorithm can effectively detect real and suspected fall actions,and its recognition accuracy can reach 97.18%with low false alarm rate.

关 键 词:摔倒动作识别 信道状态信息 希尔伯特黄变换 概率神经网络 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象